7 страница из 11
Тема
Цена прогнозов аналогичного качества значительно снизилась.

Инновации в прогностических технологиях влияют на традиционно связанные с прогнозом сферы, такие как обнаружение финансового мошенничества. Здесь наблюдается такой прогресс, что эмитенты кредитных карт выявляют и пресекают случаи мошенничества раньше, чем пользователи успевают их заметить. И все же улучшение происходит постепенно. В конце 1990-х с помощью передовых тогда методов удавалось предотвратить около 80 % мошеннических транзакций[20]. К 2000 году эти показатели поднялись до 90–95 %, а сегодня достигают 98–99,9 %[21]. Последний рывок стал результатом машинного обучения: разница между 98 и 99,9 % огромна.

Кажется, что от 98 % совсем недалеко до 99,9 %, но, если ошибки обходятся дорого, важно действовать постепенно. Улучшение с 85 до 90 % означает, что количество ошибок уменьшилось на треть. А с улучшением с 98 до 99,9 % ошибок стало в 20 раз меньше. Про такой показатель уже не скажешь «постепенно».

Падение цены на прогноз меняет и человеческую деятельность. Как первоначально компьютеры использовались для арифметических вычислений, таких как учет численности и разнообразные таблицы, так и первые прогнозы, полученные в результате машинного обучения, применялись для решения обычных прогностических задач. Помимо обнаружения мошенничества в них входили кредитоспособность, медицинская страховка и управление ресурсами.

Кредитоспособность – это прогноз вероятности погашения кредита заемщиком. Для медицинской страховки рассчитывали сумму, которую страхователь потратит на лечение. В управлении ресурсами важен прогноз загрузки склада в определенный день.

Не так давно возникли совершенно новые категории прогностических задач. Многие из них считались невыполнимыми до недавнего прогресса в технологии машинного интеллекта, в том числе распознавание объектов, языковой перевод и разработка лекарственных средств. Возьмем, к примеру, широко известный ежегодный конкурс ImageNet Challenge. Распознавание объектов – не всегда легкая задача и для человека. В данных ImageNet содержится множество категорий объектов, в том числе породы собак и другие схожие изображения. Не всегда можно уловить разницу между тибетским мастифом и бернским зенненхундом или между сейфовым и кодовым замком. Люди ошибаются примерно в 5 % случаев[22].

Если сравнивать первый (2010) и последний (2017) конкурсы, то прогнозы заметно улучшились. На рис. 1 приводится график точности победителей по годам. На вертикальной оси отмечена частота ошибок (поэтому чем ниже, тем лучше). В 2010 году лучшие прогностические машины неверно распознавали 28 % изображений. В 2012 году конкурсанты впервые использовали глубокое обучение, и частота ошибок снизилась до 16 %. Как отмечает профессор Принстона, IT-специалист Ольга Русаковская, «2012-й действительно стал годом огромного прорыва в точности, и это доказывает эффективность модели глубокого обучения, существующей уже несколько десятков лет»[23].


Рис. 1. Временной график ошибок в распознавании объектов


Алгоритмы улучшались быстро, впервые человеческий эталон был превзойден в 2015-м. К 2017 году у большинства участников было уже в два раза меньше ошибок. Машины стали распознавать объекты лучше человека[24].

Последствия удешевления прогнозов

Нынешнее поколение ИИ пока отстает от разумных машин из научной фантастики. У нас нет ЭАЛа из «2001: Космическая одиссея», «Скайнет» из «Терминатора», Си-Три-Пи-О из «Звездных войн». Если современный ИИ способен только на прогностику, почему вокруг него такой ажиотаж? Да потому, что прогноз действительно важен. Не все это понимают, но прогноз имеет значение во всех сферах человеческой деятельности, в том числе в деловой и частной жизни. Решения принимаются на основе прогнозов; чем они качественнее, тем полнее информация и, следовательно, тем лучше результаты.

Прогноз можно назвать «добычей полезной информации», что слегка отдает шпионажем[25]. Машинный же прогноз – это искусственная выработка полезной информации, а она всегда во главе угла. Качество прогноза влияет на итоги чего бы то ни было, как мы объяснили в примере с выявлением мошенничества. Благодаря снижению цены на прогноз мы делаем его полезным для многих других сфер, открывая его безграничные возможности, – например, машинный языковой перевод, который раньше нельзя было даже вообразить.

Выводы

• Прогресс роста точности прогнозов обманчив. Например, улучшение с 85 до 90 % кажется больше, чем с 98 до 99,9 % (в первом случае на 5 %, а во втором – на 2 %). Однако улучшение с 85 до 90 % означает, что количество ошибок уменьшилось на 30 %. А с улучшением с 98 до 99,9 % ошибок стало в 20 раз меньше. В некоторых условиях это меняет все.

• За волшебством прогностических машин стоит самое что ни на есть заурядное заполнение информационных пробелов. Машины умеют видеть (распознавание объектов), ориентироваться (беспилотные автомобили) и переводить.

Глава 2. Почему это называется «интеллект»

В 1956 году группа учеников Дартмутского колледжа в Нью-Гемпшире планировала исследование с целью создания ИИ. Их интересовало, можно ли запрограммировать компьютер на познавательный процесс, чтобы он учился, скажем, играть, доказывать математические теоремы и прочее. Также они предусмотрели язык и соответствующие данные, с тем чтобы компьютер мог описывать вещи. Они хотели, чтобы компьютер выбирал лучший из предложенных вариантов. Исследователи видели возможности ИИ в самом радужном свете. В обращении за финансированием к Фонду Рокфеллера они написали:

«Мы намерены выяснить, как научить компьютер использовать язык, оперировать абстрактными понятиями, решать разные типы задач, которые сейчас решают люди, и самосовершенствоваться. Полагаем, что за лето при условии сплоченной работы коллектива ученых мы заметно продвинемся в направлении одной из этих целей»[26].

Но эти планы по большей части остались в мечтах. Помимо прочего, в 1950-х компьютеры были недостаточно мощными и быстродействующими для воплощения в жизнь всех замыслов студентов.

После этого заявления ИИ показал некоторый прогресс в языковых переводах, но незначительный. Разработки ИИ для узкоспециализированной среды (например, создания программы-психотерапевта) были неприменимы в других случаях. В начале 1980-х появилась надежда на создание экспертных систем для замены квалифицированных специалистов, в том числе для постановки медицинских диагнозов, но проекты оказались дорогостоящими, громоздкими и не могли учитывать миллиарды исключений и вариантов, что привело к периоду, называемому «зимой ИИ».

Но, похоже, зима закончилась. Сейчас данных больше, модели лучше, компьютеры мощнее, поэтому недавние разработки в сфере машинного обучения привели к повышению качества прогнозов. Усовершенствования в сборе и хранении большого объема данных обеспечили основу для новых алгоритмов машинного обучения. По сравнению со своими предшественниками современные компьютеры оборудованы более мощными процессорами, а новые модели машинного обучения гибче и выдают более точные прогнозы – настолько, что эту отрасль IT снова стали называть «искусственным интеллектом».

Прогнозирование оттока клиентов

В основе развития прогностики лежат улучшенные данные, модели и компьютеры. Для понимания их ценности давайте рассмотрим давнюю проблему прогнозирования «оттока клиентов», как выражаются маркетологи. Большинству компаний привлечение клиентов обходится дорого, и, следовательно, их отток приносит убытки. С набранной клиентской базой компания экономит на этих расходах, снижая отток. Сложнее всего его контролировать в сферах профессиональных услуг: страховании, финансовых операциях и телекоммуникации. Первый шаг к снижению оттока – выявление ненадежных клиентов, для чего компании могут использовать прогностические технологии.

Раньше отток клиентов прогнозировали статистическим методом, называемым «регрессия». Научные исследования позволили усовершенствовать его.

Ученые предложили и протестировали сотни различных методов регрессии в теории и на практике.

Регрессия делает прогноз на основе средних показателей прошлого. Например, если вам необходимо определить, пойдет ли завтра дождь, и у вас есть только данные за предыдущие

Добавить цитату