11 страница из 19
Тема
гораздо раньше), и центральная часть ядра вновь резко сжимается. Образуется более плотное и горячее внутреннее ядро. После полной ионизации температура и давление во внутреннем ядре стабилизируются. Сжатие внутреннего ядра на время останавливается при массе опять-таки около 0,01 солнечной и радиусе порядка 1000 солнечных.

Как будет выглядеть такая звезда со стороны? Если в ядре пылинки давно разрушены, то на периферии – нет. Температура ядра протозвезды (теперь ее уже можно так назвать) превысит температуру фотосферы звезды спектрального класса А, однако никакого оптического источника мы не увидим – помешает пыль окружающего протозвезду газово-пылевого «кокона». Но мы увидим инфракрасный источник излучения и – возможно – космический мазер.

Что такое лазер, знают все; мазеры несколько менее известны. Мазер – это источник когерентного излучения с длиной волны, определяемой разницей соответствующих энергетических уровней молекул рабочего вещества. Поглощая жесткие кванты «накачки», рабочее вещество затем спонтанно излучает кванты совершенно определенной длины волны. В Галактике известно немало «точечных» мазерных источников излучения. «Рабочим веществом» некоторых из них является молекулярный водород Н2, других – гидроксил ОН (в условиях межзвездной газово-пылевой среды могут подолгу существовать молекулы, нестабильные на Земле, и не только гидроксил), а «накачку» осуществляет излучение ядра протозвезды.

Может случиться так (особенно с маломассивными протозвездами), что окружающий протозвезду «кокон» довольно быстро станет прозрачным. В модели Хаяши-Накано газ, падающий на внутреннее ядро протозвезды, порождает ударную волну, распространяющуюся из глубины к периферии. Ударная волна разогревает наружные слои протозвезды, разрушая пылинки, и инфракрасный источник превращается в оптический. Таких волн может быть довольно много. Наблюдатель увидит периодические яркие вспышки молодой звезды.

И действительно, подобные объекты наблюдаются. Они известны как фуоры, получившие название от их характерного представителя в созвездии Ориона: FU Ori. В 1936–1937 годах эта звезда за 120 суток увеличила свой блеск на 6 звездных величин (в 250 раз!) и до сих пор не вернулась в исходное состояние, потускнев лишь на 4 звездные величины. Для возврата к первоначальной, «естественной» светимости должно пройти не менее 100 лет от времени вспышки. Время между вспышками неизвестно, но уж точно более 100 лет. Вообще внезапное увеличение блеска на 3–6 звездных величин и удержание нового значения блеска в течение длительного времени – характернейшая черта фуоров. Не менее характерно и то, что фуоры часто погружены в плотные пылевые облака, где как раз есть все основания подозревать процесс рождения звезд. Фуоры имеют спектр F и G сверхгигантов с признаками быстрого вращения и теряют вещество в виде звездного ветра, а некоторые выбрасывают тонкие длинные джеты (струи вещества) или объекты Хербига – Аро (небольшие эмиссионные туманности неправильной формы).

Астрономам известны также звезды типа Т Тельца, почти всегда встречающиеся группами и обычно погруженные в туманности. Эти звезды похожи на красные и оранжевые гиганты, то есть звезды на заключительной стадии эволюции, когда водород в их центральных областях уже выгорел. Но почему в таком случае они образуют группы? Ведь срок водородных реакций в звезде резко различен у звезд разной массы. Это что же, в каком-то рассеянном скоплении имелись лишь звезды одинаковой массы, эволюционировавшие синхронно, причем успевшие проэволюционировать за время существования рассеянного скопления?

Если бы на небе существовала лишь одна Т-ассоциация, еще ладно – каких только «уродцев» не бывает! В каждом «порядочном» правиле есть исключения. Но как быть, если Т-ассоциаций известно множество?

Вывод был однозначен: звезды типа Т Тельца – очень молодые объекты. Об этом помимо прочего свидетельствуют их переменность и погруженность в газово-пылевые облака. Теоретические модели говорят о том же самом. По сути звезды типа Т Тельца – еще не звезды, а протозвезды, светящие за счет чего угодно, но только не ядерных реакций на водороде. Для этого их недра еще недостаточно разогреты. Существует хорошо обоснованное предположение, что фуоры – это те же звезды типа Т Тельца, только находящиеся в активной фазе.

Итак, наступает момент, когда протозвезда превращается сначала в инфракрасный, а затем и в оптический источник. Правда, по какой-то причине протозвезды сильно напоминают красные гиганты – или даже желтые сверхгиганты, каковы фуоры. А почему, собственно, если светимость звезды и ее спектральный класс вроде бы однозначно определяются ее массой?

Так-то оно так, но лишь для тех звезд, в недрах которых идут ядерные реакции на водороде. И здесь придется сделать отступление.

С давних времен астрономами предпринималось попытки не только классифицировать звезды (скажем, по спектральному классу), но и выявить какие-либо связи между параметрами звезд. Например, зависимость «масса – светимость» оказалась практически линейной (в логарифмическом масштабе) – разумеется, с разбросом, вызванным отчасти «странностями» некоторых звезд, которые ведь не сходят с одного конвейера, а отчасти и неуверенным определением абсолютной звездной величины звезды[12], так как расстояние до звезд определяется, понятное дело, с некоторой погрешностью. В 1911–1914 годах датский астроном Э. Герцшпрунг составил диаграмму «цвет – звездная величина» для скоплений Плеяды и Гиады. Примерно тем же независимо занимался американский астроном Г. Рессел. В дальнейшем после кропотливейшей работы была составлена знаменитая диаграмма «спектр-светимость» (называемая также диаграммой Герцшпрунга – Рессела), без которой теперь обходится редкая книга по астрономии (рис. 15). Каждая точка на диаграмме – звезда.

Рис. 15. Диаграмма Герцшпрунга – Рессела

Пусть читателя не вводит в заблуждение разница между понятиями «цвет» и «спектр». Никакой принципиальной разницы нет. И цвет, и спектр звезды определяется температурой ее излучающей поверхности, а указанная температура – прежде всего массой звезды. Кстати, показатель цвета звезды – вполне законная и легко измеряемая физическая величина. Так что если вам встретится диаграмма «цвет – светимость» или, что то же самое, «цвет – звездная величина», не смущайтесь – речь идет о той же самой диаграмме Герцшпрунга – Рессела, просто ось абсцисс проградуирована иначе.

При беглом взгляде на диаграмму бросается в глаза главная последовательность звезд на ней – изогнутая вроде человеческого позвоночника полоса из великого множества звезд. Оставляя в стороне подробности, скажу прямо: главная последовательность – обиталище звезд «второго поколения» (то есть обогащенных тяжелыми элементами), в которых идут ядерные реакции на водороде. Выше и правее положения Солнца на главной последовательности лежит область красных гигантов, в ядрах которых идут реакции на углероде. И сюда же, как ни странно, попадают звезды типа Т Тельца, то есть протозвезды. Впрочем, это происходит в полном соответствии с теоретическими моделями.

За счет чего светят протозвезды? Ведь их светимость порой в сотни раз выше, чем полагается при их массах?

Главным образом, за счет продолжающегося медленного сжатия. Потенциальная энергия слоев, лежащих выше, при их опускании просто-напросто переходит в тепловую энергию частиц. Но температура в ядре звезды типа Т Тельца еще недостаточна для «возгорания»

Добавить цитату