Хотя количество информации безгранично, этого нельзя сказать о времени. Решения приходится принимать. Феномен социальных данных в том, что результаты процесса их переработки могут становиться новым входящим потоком.
Работа над ошибкамиЛюдям нравится считать свои решения обоснованными. Возможность перечислить все «за» и «против» («Стоит ли принять предложение работы в другом городе или согласиться с конкурентным предложением моего нынешнего работодателя?»), сравнить варианты и выбрать то, что лучше соответствует ситуации, текущим целям и кажется наименее рискованным, придает уверенности. В прошлом люди собирали информацию, разговаривая с родными, друзьями, коллегами и наставниками. Они принимали решения в мире «небольших данных».
Сегодня можно обратиться к рейтингам удовлетворенности работой портала Glassdoor, где на условиях анонимности оценивают условия и оплату труда[46]. Там собраны отзывы сотрудников о более чем 400 000 компаний и ежегодно поступает более полумиллиона новых комментариев. Например, по компании Amazon собрано 8000 отзывов о работе, 8000 – о собеседованиях при приеме на работу и 14 000 – о зарплате. Человек, рассматривающий возможность работы в компании, получает доступ к значительно большему количеству информации о ней, чем когда-либо прежде, однако времени на то, чтобы ознакомиться со всеми 8000 отзывов и сравнить их с условиями своего нынешнего места работы, у него нет. Какие из этих отзывов достоверны, какие соответствуют рассматриваемой позиции? А если кто-то неверно понял вопрос или случайно кликнул более низкую оценку, чем хотел?
Ошибки свойственны любой информации. Во времена небольших данных люди, собиравшие информацию, считали своим долгом досконально разобраться в ней и лично вычистить и исправить ошибки. И это было очень хорошо, поскольку от информации, полученной от небольшого количества людей, иногда зависели решения, затрагивающие всю общину или даже целый штат. Ошибка в количестве заявок на пособие по безработице, полученных за неделю в каком-то штате (например, опечатка вроде «254» вместо «2541»), могла привести к искажению данных по безработице, которые в свою очередь влияют на государственную экономическую политику. Долгосрочное исследование тенденций занятости, которое проводит Статистическое управление министерства труда США, охватывает выборку примерно в 10 000 человек, то есть основывается на порядке цифр, сопоставимых с количеством отзывов сотрудников Amazon на Glassdoor[47].
Разумно предположить, что доля ошибочной информации не снижается пропорционально росту количества собранных данных. Если в наши дни мы имеем доступ к объему информации, в сто раз превышающему прежний, можно ожидать, что и количество ошибок в этом потоке увеличится в сто раз. Но теперь у нас нет возможности отслеживать и вычищать каждую ошибку в массиве информации.
Однако решение проблемы экспоненциального роста количества ошибочной информации содержится в самом факте экспоненциального роста объемов данных. Поскольку люди постоянно реагируют на продукцию инфопереработки созданием новых данных, алгоритмы могут учиться выявлять то, что может являться ошибкой ввода. Если в строке поиска ввести «Андреас Вайганд», Google поинтересуется, не имелся ли в виду «Андреас Вайгенд».
Объединяя данные из многих источников, инфопереработка может выявлять наши ошибки во входящей информации. В июле 2012 года в моем смартфоне появился сервис под названием Google Now. Он сканировал мою электронную почту в поисках информации из моих электронных авиабилетов и сообщал о статусе рейсов, делая это даже раньше авиакомпаний. Казалось бы, все просто. Но этому сервису все же удалось удивить меня степенью продвинутости анализа данных. Как-то утром, когда я только собирался паковать свои чемоданы перед отъездом из Фрайбурга, приложение сообщило, что я должен выезжать в аэропорт немедленно. По моему графику до рейса оставалось еще несколько часов, а авиакомпании обычно не сдвигают регулярные перелеты вперед больше чем на пару минут. Тем не менее я доверял Google Now больше, чем своему календарю, и решил пошевеливаться – возможно, сервис узнал об огромной пробке на дороге. Приехав в аэропорт, я понял, что неправильно ввел время рейса в календарь. Google Now проигнорировал данные, введенные вручную, и послал мне напоминание исходя из информации в моем электронном билете в Gmail. (А спустя три года Google Now автоматически вносит расписание рейсов в мой календарь сразу же после того, как электронные билеты попадают в мою почту.)
Мы уже свыклись с тем, что инфопереработчики указывают нам на подобные ошибки и исправляют их. Это полезные услуги. Вопрос в том, будем ли мы готовы принимать схожие корректировки в других областях своей жизни по мере того, как создаем и распространяем все больше личной информации.
Инфопереработке приходится также разбираться и в том, что является сигналом, а что шумом. На статистическом жаргоне сигналом называется значимая информация, а шумом – случайная и потому не имеющая значения. Сложность социальных данных в том, что различия между сигналом и шумом варьируются в зависимости от конкретного пользователя и конкретной ситуации. Когда ваш френд из Facebook ставит тэг на фото, где вы отсутствуете, что это – сигнал или шум? Когда как. Если он поставил тэг по ошибке, перепутав вас с Эндрю, который идет следующим в списке его друзей, то это шум, то есть статистический эквивалент статическим помехам в вашем радиоприемнике. А если он поставил тэг сознательно, желая ввести в курс запечатленных событий вас и ваших френдов, то это сигнал, хотя, возможно, и раздражающий. То есть, на языке статистиков, это не шум.
Обратная связь от пользователей играет важнейшую роль в совершенствовании алгоритмов обработки информации. Я не имею в виду необходимость заполнения опросников для потребителей или участия в фокус-группах. Поддержание и развитие постоянного диалога с пользователями позволяет инфообработчикам совершенствовать свои продукты и услуги и делать их более персонифицированными. Каждый сделанный вами выбор позволяет скорректировать иерархию вариантов. Но и вы сами тоже учитесь изменять формулировки своих поисковых запросов так, чтобы результаты в большей степени соответствовали ожиданиям. Не просто избегать опечаток, а правильно акцентировать свой интерес к различным аспектам темы или товарным категориям.
Тем не менее ваше взаимодействие с сайтом или приложением ограничивается предлагаемым набором опций. Я полагаю, что уточнение поисковых запросов стало бы намного более динамичным процессом, если бы пользователи имели