• высокий уровень точности и стабильности;
• легкая диагностика при помощи ограниченного числа конденсаторов;
• низкая потребляемая мощность;
• высокая герметичность датчиков (позволяет снизить требования к упаковке; обеспечивает высокую надежность, так как частицы или химические вещества не могут попасть в элемент);
• симметричные структуры элементов (улучшенная стабильность нуля акселерометра, линейность и чувствительность по оси; низкая зависимость показаний от температуры; нелинейность обычно ниже 1 %; чувствительность по оси обычно не превышает 3 %);
• возможность производств датчиков по индивидуальному заказу (получение конкретных уровней чувствительности и частотных характеристик, необходимых заказчику; гибкие двухчиповые решения);
• реальные 3D-структуры (большие защитная масса и емкость обеспечивают высокую производительность при работе в диапазоне измерений при малых g; хорошая стабильность по «0» и низкое влияние шума на показания датчика; образование 3D-сенсорных элементов).
1.3.2. Принцип действия емкостного акселерометра
В рассматриваемом типе трехосевых акселерометров принцип определения ускорения достаточно прост и надежен: инерционная масса дает возможность ощущать ускорение за счет перемещения в соответствии со вторым законом Ньютона. Основные элементы акселерометра – тело, пружина и инерционная масса (ИМ).
Когда скорость тела сенсора изменяется, ИМ через пружину так же побуждается последовать этим изменениям. Сила, воздействующая на ИМ, является причиной изменения ее движения, поэтому пружина изгибается, и расстояние между телом и ИМ изменяется пропорционально ускорению тела. Рабочие принципы сенсоров различаются в зависимости о того, по какому принципу определяется движение между телом и ИМ.
В емкостном сенсоре тело и ИМ изолированы друг от друга, и их емкость, или емкостной заряд, измеряется. Когда дистанция между ними уменьшается, емкость увеличивается, и электрический ток идет по направлению к сенсору.
В случае, когда расстояние увеличивается, наблюдается обратная ситуация: сенсор преобразует ускорение тела в электрический ток, заряд или напряжение. Превосходные характеристики рассматриваемых датчиков основаны на технологии емкостного измерения и хорошо подходят для определения малых изменений в движении.
Чувствительный элемент для определения ускорения сделан из монокристального кремния и стекла. Это обеспечивает сенсору исключительную надежность, высокую точность и устойчивость показаний по отношению к воздействию времени и температуры. Как правило, чувствительный элемент датчика с диапазоном измерений ±1 g выдерживает как минимум 50 000 g ускорений (1 g = ускорение, вызванное силой тяжести Земли). Датчик измеряет ускорение как в положительном, так и в отрицательном направлении и чувствителен к статическому ускорению и вибрации.
«Сердцем» акселерометра является симметричный чувствительный элемент (ЧЭ), изготовленный по технологиям объемной микромеханики, у которого есть два чувствительных конденсатора. Симметрия ЧЭ уменьшает зависимость от температуры и чувствительности по оси и улучшает линейность. Герметичность датчика обеспечивается за счет анодного соединения пластин друг с другом. Это облегчает корпусирование элементов, повышает надежность и позволяет использовать газовое затухание в сенсорном элементе.
Концепция гетерогенной Chip-on-MEMS-интеграции МЭМС-элементов и интегральных микросхем
При производстве трехосевого акселерометра применяют новую концепцию гетерогенной интеграции для объединения чувствительного элемента МЭМС и микросхемы (ASIC): ЧИП на МЭМС или CoM (Chip-on-MEMS).
Эта концепция основана на комбинации инкапсулированных на уровне пластины 3D-МЭМС-структур, технологии корпусирования на уровне пластины и технологии чипа на пластине. Все указанные процессы уже существуют на протяжении нескольких лет. Их комбинация позволяет решать наиболее сложную проблему корпусирования: как экономически эффективно совместить МЭМС-элементы и интегральные микросхемы. Исходя из описанной концепции, технология включает в себя следующие шаги: перераспределение и изоляция слоев на МЭМС-пластине, нанесение 300 микронных шариков припоя, установка на МЭМС-пластину микросхем, пассивация зазоров между микросхемами и МЭМС, тестирование пластины с МЭМС-устройствами, резка пластины и финальное тестирование и калибровка сенсоров после резки.
На рис. 1.6 и 1.7 (выше) представлены симметричный чувствительный элемент емкостного акселерометра и вид установки на МЭМС-пластину интегральных микросхем.
Благодаря технологии CoM можно получить полноценное функциональное МЭМС-устройство с размером корпуса по периметру 4×2 мм и высотой 1 мм. Данная технология полностью готова для производства датчиков, как для небольших партий, так и в промышленных масштабах.
В табл. 1.2 представлены технические характеристики емкостного трехосевого акселерометра.
Таблица 1.2. Технические характеристики емкостного трехосевого акселерометра
Благодаря отличным характеристикам по стабильности и вибрационной надежности рассматриваемые акселерометры могут успешно применяться в следующих сферах:
• электронный контроль стабильности движения контролируемого устройства;
• система помощи при старте двигателя на подъеме;
• электронный стояночный тормоз;
• электронная защита от переворачивания;
• регулировка подвески;
• контроль углов наклона;
• встроенные инерциальные системы;
• применение в промышленности для различных устройств.
1.4. Производители МЭМС-акселерометров
Существует много способов производства и применения микроэлектромеханических сенсоров. В качестве производственных площадок можно отметить немецкие предприятия, входящие в состав Ассоциации Silicon Saxony e.V., институт Fraunhofer, корпорации Honeywell International Inc. и Analog Devices Inc. (США), Московский государственный институт электронной техники (МИЭТ), a также компании-производители радиоэлектронных компонентов, расположенные в разных странах мира.
Работа организуется по следующим актуальным направлениям:
• выработка рекомендаций для заказчиков по применению тех или иных сенсоров мировых производителей при производстве российских систем;
• поставка различных датчиков (на базе МЭМС и других принципах) для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей (компас);
• доработка различных сенсорных компонентов известных мировых производителей под требования заказчика (изменение в ту или иную сторону диапазона измерений, функциональных характеристик и т. д.) с дальнейшим производством доработанных датчиков на «родном» заводе-изготовителе;
• организация проведения программы испытаний сенсорной ЭКБ в одном из российских или зарубежных сертификационных центров с выдачей сертификата установленного образца;
• организация разработки и изготовления под индивидуальные требования заказчика сенсорных систем, включающих различные датчики (на базе МЭМС и других принципах), для измерения ускорения, угловых скоростей, давления, скорости потока жидкости или газа, температуры, влажности, определения движения объекта и его скорости, распознавания магнитных полей и др.;
• обучение специалистов российских предприятий по вопросам проектирования, разработки и производства МЭМС-сенсоров. К учебному процессу привлекаются ведущие российские и зарубежные специалисты в этой сфере.
1.5. Перспективные разработки в области МЭМС
1.5.1. Электронный демпфер осадок
Действующий прототип сенсорной системы давно применяется в качестве чувствительного элемента; содержит в себе микроструктуры с воздушным зазором, обладает высокими чувствительностью и соотношением «сигнал/шум», низкой чувствительностью к помехам, хорошей температурной стабильностью.
В совокупности с другими компонентами и датчиками его применяют в автомобильной промышленности (срабатывание подушек безопасности и др.), для диагностики рельсового пути (контроль угла наклона), в системах навигации (измерение рысканья, крена и тангажа летального аппарата), для контроля угла наклона трубопроводов и в других сферах. Проведено через программу испытаний в России с выдачей государственного сертификата установленного образца и представлено в виде готового изделия российского происхождения. Предложение потребителям систем и устройств, состоящих из современных сенсоров (МЭМС-акселерометры, гироскопы и др.), имеющих российское происхождение, этим не ограничивается. Ведутся активные разработки невоенного предназначения системы (индикатора) электронного гидроуровня минимальной стоимости с длительным сроком эксплуатации.
Низкая цена позволит в широком спектре условий и задач устанавливать такие уровни в конструкциях фундаментов зданий и отслеживать на компьютере осадки здания (мониторинг). В процессе контроллинга производится регулировка неравномерных осадок здания. Регулировка осуществляется «электронным демпфером осадок»,