10 страница из 14
Тема
формирование в диске планет. Подтверждение теория нашла весной 2020 года, когда было опубликовано великолепное изображение протопланетного диска звезды AB Возничего, на котором впервые отчетливо оказались видны два соединяющихся спиральных рукава19. Скорее всего, в этом месте мы наблюдаем рост планеты, уже достигшей 4–13 MJ.

По мере удаления от центральной звезды температура газа в протопланетном диске падает, и вот, с некоторого момента, газ начинает конденсироваться и появляются кристаллики льда из аммиака, метана, воды и других веществ. Это очень важный момент. Условная линия, отделяющая в протопланетном диске участок, где большинство летучих веществ находится в газообразном состоянии, от участка, где эти же вещества пребывают в сублимированном виде (в виде льда), называется снеговой линией. Изменение яркости и температуры звезды в процессе ее эволюции заставляет снеговую линию перемещаться по протопланетному диску. В Солнечной системе снеговая линия водяного льда в протопланетном диске проходила в районе Главного пояса астероидов, между орбитами Марса и Юпитера.

За снеговой линией частички льда играют важнейшую роль в формировании планеты. Масса льда, которую аккумулируют протопланеты, на порядки больше массы аккумулируемых ими твердых частичек. Когда масса формирующейся планеты превышает 10–15 M⊕, планета становится способна притягивать газ из протопланетного облака. Так рождаются газовые гиганты. В Солнечной системе планеты от Меркурия до Марса образовались в условиях относительно высоких температур, а Юпитер и более далекие планеты сформировались за снеговой линией и стали газовыми гигантами.

Стоит отметить, что существует еще один возможный механизм образования газовых гигантов. В протопланетном диске, в сверхплотных рукавах газа и пыли, вращающихся вокруг звезды, спонтанно могут возникать регионы с повышенной плотностью. Некоторые из них сразу же распадаются, а другие, наиболее массивные, существуют тысячи лет, притягивая к себе газ из близлежащих областей. Такое явление называется гравитационной неустойчивостью. Неустойчивость порождает гравитационно связанное газопылевое облако массой в несколько масс Юпитера, которое может достигать в поперечнике 2–6 а. е.20 Такое возможно лишь во внешнем, расширенном протопланетном диске, который сформировался вдали от своей звезды, за снеговой линией.

Под действием гравитации облако газа, образовавшееся из неустойчивостей, начинает сокращаться в размерах и уплотняться. Этот процесс сопровождается ростом температуры и давления газа в облаке. В конце концов температура в его центре достигает 2 000 К, и молекулы водорода начинают диссоциировать (разделяться на атомы). С этого момента часть энергии идет уже не на поддержание давления газа, а на химические реакции диссоциации. Скорость роста температуры замедляется, гравитация оказывается сильнее давления газа, и облако неудержимо коллапсирует, рождая планету – газового гиганта21. Размер планеты определяется равновесием между самогравитацией и давлением газа, а масса зависит от массы породившей планету гравитационной неустойчивости.

Гипотеза гравитационной неустойчивости может объяснить особенности расположения планет-гигантов и их массы, однако для объяснения происхождения каменистых планет Солнечной системы она совершенно не подходит. Так как же образовались планеты земной группы? На этот счет существует несколько конкурирующих гипотез.

Формирование газовых гигантов заканчивается только тогда, когда в результате аккреции и воздействия потока вещества, идущего от Солнца (звездного ветра), околозвездный диск рассеивается. Из данных наблюдений мы знаем, что большинство протопланетных дисков исчезает через 10 миллионов лет после образования звезды, причем среднее время жизни протопланетного диска всего 2–3 миллиона лет22. Значит, если газовые гиганты образуются в диске, то это происходит довольно быстро.

Выше я упомянул, что Солнечная система образовалась 4,6 миллиарда лет назад. Как это удалось определить? Метод, с помощью которого можно получить самую точную цифру, пришел в астрофизику из геохимии и называется радиоизотопным анализом. Давайте немного поговорим о нем, ведь благодаря ему мы можем провести датировку основных этапов истории Солнечной системы.

Еще со школы вам знакомы слова «радиоактивный распад». Это явление, при котором одни элементарные частицы распадаются на другие элементарные частицы. Не все частицы подвержены радиоактивному распаду. Например, 12С и 14С – изотопы углерода, которые ведут себя совершенно по-разному. В изотопе 12С содержится шесть протонов, шесть нейтронов и шесть электронов (протоны и нейтроны называются нуклонами, их число равно массовому числу атома химического элемента; массовое число обычно записывается сверху слева рядом с символом химического элемента). В изотопе углерода 14С количество нейтронов на два больше, а количество протонов и электронов совпадает с их количеством в 12С. Химические свойства изотопов идентичны. Однако мир устроен так, что конфигурация атомного ядра с двумя лишними нейтронами не может существовать долго, и один нейтрон в 14С распадается на протон, электрон (обозначается как и антинейтрино  Минус один нейтрон и плюс один протон в ядре 14С приравнивают число протонов и нейтронов друг к другу, превращая атом углерода в азот. На языке ядерной физики данная реакция записывается следующим образом:



Изотоп углерода 12С ведет себя иначе: сколько за ним ни наблюдай, он все равно будет углеродом.

Распад нейтрона – процесс спонтанный. Каждый отдельный нейтрон может распасться когда угодно. Чем больше число нестабильных частиц в эксперименте, тем больше частиц распадается за одну секунду. Однако если взять большую совокупность нестабильных частиц, то время, за которое половина из них распадется, будет примерно одним и тем же, сколько бы раз эксперимент ни проводился. Это время называется периодом полураспада. Он не является каким-то мистическим свойством нестабильных частиц – это математическая характеристика данного случайного процесса. Чем больше частиц вы возьмете, тем точнее сможете определить период полураспада. Радиоактивному распаду могут подвергаться как частицы, находящиеся в ядре, так и свободные частицы, не связанные с атомом. Период полураспада свободного нейтрона равен примерно 10 мин., а находящегося в ядре 14С – около 5 700 лет.

Радиоизотопный анализ используется для того, чтобы установить абсолютный возраст органических материалов, обнаруженных в ходе геологических, палеонтологических и археологических раскопок – это так называемое радиоизотопное датирование. Для находок возрастом до нескольких десятков тысяч лет лучше всего подходит исследование изотопов углерода.

До самой смерти организм обменивается углеродом с окружающей средой. Этот обмен обеспечивает постоянство изотопного состава углерода внутри организма. Когда же организм умирает, обмен прекращается, и содержание в тканях радиоактивного изотопа 14С начинает падать. В лаборатории, чтобы определить концентрацию 14С и 12С, образец исследуется с использованием масс-спектрографа. Полученные с его помощью данные о концентрации изотопов позволяют определить, сколько лет прошло со времени смерти организма.

Для успешного применения этого метода необходимо знать исходное соотношение концентраций атомов 14С к 12С в организме. Еще в середине XX века считалось, что соотношение изотопов углерода постоянно. Но затем выяснилось, что изотопный состав атмосферы может довольно быстро меняться. Сегодня данные, полученные путем радиоизотопного анализа, калибруются по образцам органики, возраст которой удалось определить другими методами (например, подсчитывая годовые кольца на деревьях).

С помощью радиоизотопного датирования определяют и возраст космических

Добавить цитату