Как ни старайся, мы не сможем впихнуть в голову ребенка абсолютно все знания об окружающем мире. Но, к счастью, этого и не требуется.
С пониманием киваю. Торт – это очень важно. А Кристина восторженно продолжает вещать:
– У меня так смешно: день рождения всегда весной. У других бывает летом, зимой, осенью. А у меня всегда весной. Каждый год весной получается, и ни разу даже осенью!
В восприятии семилетней Кристины день рождения – это просто праздник конкретного человека, не привязанный к строго определенной дате и конкретному факту появления на свет. Как-то эту взаимосвязь ей объяснить забыли. Так, кстати, часто бывает: взрослые скажут что-то с высоты своего опыта и своих знаний в полной уверенности, что ребенок их понял нужным образом. А у ребенка в голове совсем другая картина выстраивается. Вот и у Кристины относительно дня рождения получилась мешанина из случайных чисел.
Это дидактическая ошибка. Нельзя формировать хоть временное, но ложное представление. Знания нужно давать в системе. Не просто выдавать информацию по кусочкам, а показывать, как этот кусочек соотносится с целым, с уже известным. Представьте, что будет, если показать ребенку картинку с хоботом слона и сказать: «Это хобот», – а с остальными частями тела животного познакомить только через год. Возможно, что некоторое время маленький ребенок будет думать, что хобот – это самостоятельное животное, похожее на удава. Потом, конечно, он все поймет, когда получит остальные фрагменты целостной картинки. Казалось бы, ничего страшного. Но при таком подходе системность мышления не формируется. У человека, привыкшего получать знания в разрозненном виде, без установления взаимосвязей, без понимания соотношения части и целого, не формируется потребность в выстраивании целостной картины. Он не будет фанатично искать недостающие элементы системы и задавать проясняющие вопросы. Есть то, есть это, а как это связано с тем – его не волнует… Системность – важный дидактический принцип, суть которого хорошо отражена в философском тезисе: «Целое больше суммы своих частей».
При фрагментарном подходе ребенок может знать, что он вырос в животе у мамы из маленькой клеточки, и при этом верить, что его приятеля нашли в капусте, а подружку купили в магазине. При системном подходе ребенок знает, что он – часть природы, часть животного мира, что процессы размножения схожи у разных животных. Что абсолютно каждый ребенок вырастает из клеточки.
При фрагментарном подходе ребенок знает, что есть день, есть ночь, есть солнце и луна. И удивляется: «Зачем глупое солнце светит днем, когда и так светло? Светило бы, как луна, ночью, было бы больше пользы». При системном подходе ребенку помогают установить правильную причинно-следственную связь: днем светло, потому что в этот момент наш участок Земли освещен Солнцем.
При фрагментарном подходе ребенок считает, что волк плохой, потому что съедает хорошего зайчика. При системном подходе ребенок понимает, что волк и зайчик – звенья пищевой цепочки.
При фрагментарном подходе ребенок заучивает домашний адрес: «Улица Пушкина» – и спорит, что он живет на улице Пушкина, а не в Екатеринбурге. При системном подходе ребенок знает, что улица Пушкина находится в Екатеринбурге, а Екатеринбург – город в России. Он легко встроит в эту систему любой город мира по критерию «находится в России или нет». Теория множеств для дошкольников? Легко!
При фрагментарном подходе ребенок зубрит таблицу сложения как странный стих без рифмы. При системном – понимает общий принцип и сам доходит до операции умножения, радостно сообщая однажды: «Сто раз по сто – это десять тысяч!» В пять лет реально даже начинать знакомить с понятием возведения в степень. (Если уж пытливый детский ум своими вопросами до этого доведет.) Мой пятилетний сын Сашка вместо «очень-очень много» говорил «додекальон», имея в виду 10 в степени 39. А я в его годы никак не могла понять, почему не существует самого большого числа.
При фрагментарном подходе ребенок запоминает картинки и названия: треугольник, квадрат, прямоугольник. И не задумывается, что бывают другие фигуры. При системном подходе ребенок понимает, что это все – фигуры. Что треугольник – это потому что три угла, а если угла четыре, то это четырехугольник. Что четырехугольники бывают разные. А если у фигуры пять углов? Пятиугольник! И можно уже картинку не показывать – ребенок сам нарисует по аналогии. А круг – это правильный бесконечноугольник. Потому что правильный N-угольник при увеличении параметра N все больше похож на круг – проверяется экспериментально в графическом редакторе. Элементы математического анализа в дошкольном возрасте? Легко!
Как учитель математики по первому образованию, имеющий опыт работы в школе, могу сказать, что очень тяжело переучивать детей, которые выучили, что есть квадрат, прямоугольник, ромб, трапеция, параллелограмм, но всё – вне системы. Они спорят, что вот это квадрат, а это прямоугольник. И не понимают, что квадрат – это тоже прямоугольник. А еще квадрат – частный случай параллелограмма. И ромбом квадрат тоже является. Это даже в седьмом классе некоторые с трудом понимают. Увы, системное мышление само собой не формируется.
Главные принципы развития системного мышления
#чутьчутьдидактики
#системныйподход
#выстраиваемсвязи
При системном подходе новая информация дается обязательно с опорой на уже существующую, и при этом объясняется, как новое связано с уже известным.
Когда вы знакомите ребенка с новым понятием, обязательно помогите ему выстроить связи с тем, что уже есть в системе его знаний.
1. Дать этому название. В дальнейшем сформируется узнавание.
2. Рассказать, откуда это взялось. Установление причинно-следственных связей.
3. Рассказать, зачем это нужно, кому это нужно, как можно это использовать. Функциональность объекта.
4. Дать более общее понятие. Рассказать о надсистеме, то есть о множестве, куда входит этот объект. Обобщение.
5. Рассказать о подсистеме, о составных частях объекта. Из чего он состоит. Умение видеть части целого.
6. Рассказать о связях с другими объектами. Установление сходства и отличий.
Системное мышление в младшем дошкольном возрасте – это умение соотносить часть и целое, искать сходства и отличия, уметь обобщать и понимать простые причинно-следственные связи. Лужа – она ведь не сама по себе лужа, а потому что прошел дождь. И исчезнет лужа не потому, что ей так захотелось, а потому, что ее высушат солнце и ветер. Точно так же дома можно высушить капли воды на поверхности стола, если на них дуть. Эксперименты и аналогии в дошкольном возрасте? Легко!
Ребенок принес вам одуванчик. Кроме «спасибо», скажите, как называется этот похожий на солнышко цветок. Отметьте, какой он красивый, как приятно на него смотреть. Объясните, что вырос одуванчик из маленького семени. Когда одуванчик отцветает, он становится похожим на пушистый белый шарик. Если подуть на такой шарик, семена полетят в разные стороны. Если ребенок уже знает, что такое парашют, можно