16 страница из 35
Тема
геометрии; этот принцип получил свое завершение у Евклида. В книге II Евклид доказывает геометрически многое из того, что для нас естественнее было бы доказывать алгебраически, например, что (а + b)2 = а2 + 2аb + b2. Евклид счел этот способ необходимым именно благодаря трудностям, связанным с несоизмеримостью величин. То же самое наблюдается и в толковании Евклидом пропорции в книгах V и VI. Вся система Евклида превосходна в логическом отношении, и она предвосхитила математическую строгость выводов математиков XIX века. Поскольку адекватной арифметической теории несоизмеримых величин не существовало, метод Евклида был наилучшим из возможных в геометрии методов. Когда Декарт ввел координаты в геометрию, снова вернув тем самым арифметике верховенство, он сделал предположение, что разрешение проблемы несоизмеримости вполне возможно, хотя в его время такое решение еще не было найдено.

Влияние геометрии на философию и научный метод было глубоким. Геометрия в таком виде, в каком она установилась у греков, отправляется от аксиом, которые являются самоочевидными (или полагаются таковыми), и через дедуктивные рассуждения приходит к теоремам, которые весьма далеки от самоочевидности. При этом утверждают, что аксиомы и теоремы являются истинными применительно к действительному пространству, которое является чем-то данным в опыте. Поэтому кажется возможным, используя дедукцию, совершать открытия, относящиеся к действительному миру, исходя из того, что является самоочевидным. Подобная точка зрения оказала влияние как на Платона и Канта, так и на многих других философов, стоявших между ними. Когда Декларация независимости говорит: «Мы утверждаем, что эти истины самоочевидны», – она следует образцу Евклида. Распространенная в XVIII веке доктрина о естественных правах человека является поиском евклидовых аксиом в области политики[33].

Форма ньютоновского произведения «Начала», несмотря на его общепризнанный эмпирический материал, целиком определяется влиянием Евклида. Теология в своих наиболее точных схоластических формах обязана своим стилем тому же источнику. Личная религия ведет свое начало от экстаза, теология – из математики; и то, и другое можно найти у Пифагора.

Я полагаю, что математика является главным источником веры в вечную и точную истину, как и в сверхчувственный интеллигибельный мир. Геометрия имеет дело с точными окружностями, но ни один чувственный объект не является точно круглым; и как бы мы тщательно ни применяли наш циркуль, окружности всегда будут до некоторой степени несовершенными и неправильными. Это наталкивает на предположение, что всякое точное размышление имеет дело с идеалом, противостоящим чувственным объектам. Естественно сделать еще один шаг вперед и доказывать, что мысль благороднее чувства, а объекты мысли более реальны, чем объекты чувственного восприятия. Мистические доктрины по поводу соотношения времени и вечности также получают поддержку от чистой математики, ибо математические объекты, например, числа (если они вообще реальны), являются вечными и вневременными. А подобные вечные объекты могут в свою очередь быть истолкованы как мысли Бога. Отсюда платоновская доктрина, согласно которой Бог является геометром, а также представление сэра Джеймса Джинса о том, что Бог предается арифметическим занятиям. Со времени Пифагора, а особенно Платона, рационалистическая религия, являющаяся противоположностью религии откровения, находилась под полным влиянием математики и математического метода.

Начавшееся с Пифагора сочетание математики и теологии характерно для религиозной философии Греции, Средневековья и Нового времени вплоть до Канта. До Пифагора орфизм был аналогичен азиатским мистическим религиям. Но для Платона, св. Августина, Фомы Аквинского, Декарта, Спинозы и Канта характерно тесное сочетание религии и рассуждения, морального вдохновения и логического восхищения тем, что является вневременным, – сочетание, которое начинается с Пифагора и которое отличает интеллектуализированную теологию Европы от более откровенного мистицизма Азии. Только в самое последнее время стало возможным ясно сказать, в чем состояла ошибка Пифагора. И я не знаю другого человека, который был бы столь влиятельным в области мышления, как Пифагор. Я говорю так потому, что кажущееся платонизмом оказывается при ближайшем анализе в сущности пифагореизмом. С Пифагора начинается вся концепция вечного мира, доступного интеллекту и недоступного чувствам. Если бы не он, то христиане не учили бы о Христе как о Слове; если бы не он, теологи не искали бы логических доказательств бытия Бога и бессмертия. У Пифагора все это дано еще в скрытой форме. Как это стало явным, будет показано в дальнейшем.

Глава IV. Гераклит

В настоящее время имеют распространение две противоположные точки зрения на греков. Сторонники одной точки зрения – практически общепризнанной со времен Возрождения и вплоть до наших дней – смотрят на греков почти с суеверной почтительностью, как на изобретателей всего того, что имеется наилучшего, как на людей сверхчеловеческой гениальности, сравняться с которыми современные люди не могут и надеяться. Приверженцы другой точки зрения, вдохновленные торжеством науки и оптимистической верой в прогресс, считают авторитет древних кошмаром и утверждают, что теперь лучше всего предать забвению бо́льшую часть их вклада в человеческую мысль. Я сам не могу принять ни одной из этих крайних точек зрения. Я должен сказать, что каждая из них частично правильна, а частично ложна. Прежде чем вникать в какие-либо подробности, я попытаюсь рассказать, какого рода мудрости мы можем еще научиться при рассмотрении греческой мысли.

Что касается природы и строения мира, то возможны самые различные гипотезы. Прогресс в метафизике, поскольку он имел место, состоял в постепенном усовершенствовании всех этих гипотез, в развитии того, что в них подразумевалось, и в их переработке для опровержения возражений, выдвигаемых приверженцами соперничающих гипотез. Научиться понимать Вселенную в соответствии с каждой из этих систем – наслаждение для воображения и в то же время противоядие от догматизма. Более того, даже если ни одна из гипотез не может быть доказана, истинное значение состоит в том, чтобы открыть тот заключенный в них элемент, который делает каждую из них логически последовательной в себе и согласующейся с известными фактами. Так вот, почти все гипотезы, господствующие в современной философии, первоначально были выдвинуты греками. Их богатая воображением изобретательность в абстрактных вопросах едва ли может быть переоценена. Во всем, что я буду говорить о греках, я буду руководствоваться главным образом этой точкой зрения. Я буду считать их родоначальниками теорий, которые при всем своем первоначально довольно младенческом характере оказались способными к сохранению и развитию в течение более двух тысячелетий.

Греки сделали, правда, кое-что еще, что оказалось имеющим поистине наиболее устойчивую ценность для абстрактной мысли: они открыли математику и искусство дедуктивного рассуждения. В частности, геометрия – специфически греческое изобретение, и без нее современная наука была бы невозможна. Но в связи с математикой выявляется односторонность греческого гения: он размышляет дедуктивно, исходя из того, что кажется самоочевидным, а не индуктивно, сообразуясь с предметом наблюдения. Изумительные успехи греков в использовании этого метода ввели в заблуждение не

Добавить цитату