ПЕРВЫЕ ИССЛЕДОВАНИЯ
Благодаря ван Схотену Гюйгенс прекрасно владел математикой, существовавшей до появления математического анализа. Первых успехов он добился в геометрии, в тех ее областях, которые сегодня считаются устаревшими: такие как квадратура — геометрическая игра, состоящая в том, чтобы строить квадраты на основе любых фигур так, чтобы площадь квадрата была равна площади исходной фигуры. При решении задачи можно было пользоваться только линейкой и циркулем, из-за чего построить некоторые квадратуры, например квадратуру круга, было невозможно. Только в XIX веке немецкий математик Фердинанд фон Линдеман доказал невозможность такого построения, но до этого момента лучшие умы посвящали поискам решения огромное количество сил и времени. В возрасте 22 лет Гюйгенс нашел ошибку в одной из самых сложных попыток, предпринятой фламандским иезуитом Грегорио ди Сан Винченцо. Христиан усовершенствовал метод построения квадратур и применил его к коническим сечениям (эллипсам, параболам и гиперболам), а с помощью приблизительной квадратуры круга улучшил метод Архимеда для вычисления цифр после запятой в числе π.
Ван Схотен с энтузиазмом отнесся к работам Гюйгенса и полагал, что их можно поставить в один ряд с трудами древних греков. Он был прав, однако в XVII веке в математике происходила резкая смена вектора, окончательно отделившая ее от древнегреческой науки. Несмотря на то что геометрические открытия Гюйгенса не оставили заметного следа в истории математики, благодаря им он заслужил восхищение современников, а также овладел инструментами, позволявшими понять механизм природы.
Гюйгенс разделял интерес Архимеда к механике. На страницах трудов обоих соседствуют треугольники, весы, параболы и центры притяжения, так что трудно сказать, где заканчивается физика и начинается математика. В нидерландском языке есть слово vernufteling, как нельзя более точно описывающее Гюйгенса. Оно обозначает одновременно отличные интеллектуальные способности и склонность к ручному труду. Ученый не создал грандиозных систем, как Декарт или Ньютон, его больше интересовали отдельные явления, которые он разбирал так, словно имел дело с шестеренками сложного механизма, только вместо гаечных ключей и отверток использовал алгебру и геометрию. Все увлечения Гюйгенса приводили к изобретениям (таким как телескопы и часы), рождавшимся из почти чудесного объединения физики, математики и тонкого ручного труда. Ученый был любопытным примером стремления к чистой абстракции и одновременно с этим — ремесленного прагматизма. Это сочетание очень рано проявилось в его работе в области оптики. Свойства линз со временем стали главным научным интересом Гюйгенса, которому он отдавался на протяжении всей жизни, в итоге усовершенствовав конструкцию телескопа, а также сделав удивительные астрономические открытия. А самое главное — благодаря этому интересу ученый совершил одно из глубочайших исследований природы света. Конец истории имел для Гюйгенса горьковатый привкус: в соперничестве с Ньютоном они находились в разных весовых категориях, но в самом начале научной дуэли, когда Христиан дошел до пределов Солнечной системы, он, без сомнения, одержал победу.
РИС. 1
РИС. 2
РИС.З
ЛАБИРИНТЫ СВЕТА
В конце октября 1652 года Гюйгенс признавался ван Схотену: «Я полностью поглощен диоптрикой». Этим термином в 1611 году Кеплер обозначил область, математически исследующую траектории луча света при прохождении через группу линз. Непротиворечивая теория, способная объяснить все явления, связанные с взаимодействием света и материи, появилась только в XX веке. Но для создания оптических инструментов достаточно воспользоваться приближением геометрической оптики, в рамках которого свет рассматривается как пучок прямых линий. Ниже мы постараемся объяснить, в каком состоянии находилась диоптрика до того, как ею занялся Гюйгенс.
Свет преломляется или отклоняется, пересекая границу двух сред, которые в состоянии пропустить его. При этом часть света отражается — этот аспект мы не будем принимать во внимание, но он ограничивает количество линз, которые можно разместить в одной оптической системе. Чем больше стекол должен пересечь свет, тем больше его потеряется по пути и тем слабее будет изображение.
РИС. 4
РИС. 5
Явление рефракции можно наблюдать в любой прозрачной среде, когда солнечные лучи проходят через воду, воздух и стекло. Угол отклонения зависит от каждой пары сред. Так, если луч проходит от стекла к воздуху (см. рисунок 1), угол будет больше (β > а), а если в обратном направлении, от воздуха к стеклу (см. рисунок 2), то меньше.
Проходя через прозрачное тело, лучи света дважды пересекают границу сред, то есть дважды преломляются. Если эти границы являются плоскими и параллельными друг другу, при отклонении лучи смещаются в сторону (d), как в случае с оконным стеклом (см. рисунок 3).
Если граница не плоская, то лучи будут расходиться беспорядочно, в разных направлениях, в зависимости от точки пересечения (см. рисунки 4 и 5). Эти отклонения можно организовать, придав лучам определенное направление, и мы получим некоторое изображение.
Примем, что окружающие нас предметы испускают видимый свет. В некотором смысле так и есть, хотя это условное испускание, являющееся результатом реакции на свет, который на них падает (например, от Солнца или лампы). Атомы, из которых состоит материя, взаимодействуют с фотонами — частицами света, — доходящими до поверхности, и в ходе этого процесса высвобождают новые фотоны.
РИС. 6
РИС. 7
РИС. 8
Качество света, испускаемого таким образом, зависит от двух факторов: от того, как свет дошел до материи, и от самой ее структуры (какие атомы ее образуют и как они организованы в пространстве). Осветить яблоко солнечными лучами или красным искусственным светом — это не одно и то же, как не одно и то же — осветить яблоко, хрустальную пепельницу или зеркало. Мы можем положить под лампу книгу или апельсин. Оба предмета получат одинаковый свет от этого источника, но будут взаимодействовать с ним по-разному и отражать разные световые лучи. Эти различия дают нам информацию о том, на какой именно предмет мы смотрим. Если нам нужно изучить процесс образования изображений, то мы должны исходить из видимого света, отраженного телами.
Рассмотрим пример с синим карандашом на рисунке 6 (на предыдущей странице). С каждой точки его поверхности в разных направлениях исходят световые лучи. В них содержатся данные о форме и фактуре карандаша. Лучи, исходящие из точки А, взаимодействуют с синим грифелем, который поглощает зеленый и красный цвета. Лучи, исходящие из С, взаимодействуют со слоем зеленой краски, которая поглощает красный и синий. Наконец, лучи, исходящие из В, взаимодействуют с красной краской, которая поглощает синий и