Если же между экраном и карандашом мы разместим стеклянную линзу (см. рисунок 7), ситуация изменится кардинальным образом. Все синие лучи, отраженные точкой А и доходящие до линзы, сойдутся в точке экрана A', которая тоже будет синей. То же произойдет с красными лучами точки B, которые дойдут до красной точки В', и с любой другой точкой видимой поверхности карандаша. Свет от предмета больше не рассеивается равномерно по всей поверхности экрана. Линза благодаря своей геометрии и рефракции позволяет разделить лучи — она соединяет каждую точку карандаша с определенной точкой экрана. В результате на нем проецируется перевернутое изображение карандаша, которое дает информацию о предмете, полученную при взаимодействии с ним света. Эту передачу данных при помощи света мы называем видением, ведь в наших глазах имеются линзы, проецирующие изображение на светочувствительные клетки сетчатки.
В отсутствие экрана, сетчатки или пластины из светочувствительного материала лучи будут пересекаться за линзой, в точках А', В’, С и других и продолжат свой путь, не взаимодействуя друг с другом (см. рисунок 8). Совокупность этих точек формирует модель своего изображения, подобную (обратную и другого масштаба) той, что отражается от поверхности карандаша.
РИС. 9
РИС. 10
По той же причине изображение будет четким только на определенном расстоянии от линзы, где сходятся лучи, порождающие точки А', В' и С'.
Если мы расположим экран немного ближе этой точки (в d1) или немного дальше нее (в d2), то лучи, исходящие, например, от В, не будут сходиться в одной и той же точке, порождая всего одну точку В', но спроецируют окружность (см. рисунок 9). Каждая точка карандаша порождает световое пятно, а итоговое изображение будет напоминать рисунок чернилами на впитывающей бумаге, когда каждая точка теряет свою четкость. Накладываясь друг на друга, окружности образуют размытое изображение.
РИС. 11
С самого создания диоптрики главной ее целью было установление размеров изображения и расстояния, на котором оно возникает в четком виде, в зависимости от расположения источника света. Ключ к решению надо искать в фокусном расстоянии, то есть в расстоянии, на котором сходится пучок лучей, прошедших сквозь линзу (см. рисунок 10). Впервые фокусное расстояние было определено экспериментальным путем после небольшого возгорания, вызванного концентрацией солнечных лучей, преломляющихся в изогнутом куске стекла. Точка, в которой они сходятся, называется фокусом; мы будем обозначать его буквой I.
Фокусное расстояние — самая важная оптическая характеристика линз, которая показывает их способность отклонять лучи света. Расстояние зависит от материала линзы и от ее геометрии, то есть степени изгиба ее контуров, влияющей также на толщину линзы. Чем больше изгиб линзы (и ее толщина), тем меньше фокусное расстояние, и наоборот.
Фокусное расстояние позволяет разделить пространство перед линзой — пространство предметов — на три большие зоны и исследовать, как меняется изображение в зависимости от расположения предмета. Первая зона начинается в точке, удаленной от линзы на два фокусных расстояния, и уходит в бесконечность. Вторая находится между точками фокусного расстояния и удвоенного фокусного расстояния. Третья лежит между линзой и точкой фокусного расстояния. Можно установить три области, симметричные этим и находящиеся с другой стороны линзы (четвертую, пятую и шестую), — пространство изображений. Определив поле игры (см. рисунок 11), мы можем начать матч, поместив синий карандаш в первую зону. Линза уменьшит изображение и перевернет его, отобразив в пятой зоне. Чем дальше будет карандаш от линзы, тем ближе окажется его перевернутое изображение к точке f. При приближении карандаша к линзе его перевернутое изображение будет увеличиваться, одновременно приближаясь к 2f. Предметы, расположенные в этой первой зоне, формируют изображения, удобные для фотоаппаратов: когда мы фотографируем, нам нужно уместить пейзаж или лицо человека в небольшой прямоугольник.
В тот момент, когда карандаш достигает f, линза формирует его перевернутое изображение без уменьшения размеров в 2f. Если мы продолжим приближать карандаш и сместим его во вторую зону, линза образует увеличенное перевернутое изображение в шестой зоне. Чем ближе карандаш будет к f, тем больше будет изображение и тем дальше оно окажется от 2f.
РИС. 12
РИС. 13
Именно поэтому вторая область используется для проекции изображений, например на киноэкране.
Если карандаш окажется в /, линза не сможет сформировать никакого изображения, искривленные ею лучи света не будут организованы каким-либо полезным для нас образом. Но если поместить предмет в третью область, линза начнет отклонять лучи весьма своеобразно (см. рисунок 12). Полученное изображение нельзя будет спроецировать на экран или фотоаппарат. Изображение будет представлять собой карандаш гораздо больших размеров, при этом не перевернутый. Такое изображение называется мнимым, а этот эффект используется в увеличительных стеклах, которые подносят очень близко к предметам.
РИС. 14
РИС. 15
Примерно в 1608 году было случайно обнаружено, что комбинируя последовательные отклонения, производимые двумя линзами, можно получить увеличенные изображения удаленных предметов. Так был изобретен телескоп. На рисунке 13 показана схема расположения стекол, позволяющая использовать их оптические свойства. Разумеется, телескопы направляют на предметы, которые находятся от первой линзы на гораздо большем расстоянии, чем двойное фокусное; поэтому аппарат создает маленькое изображение между своей точкой ƒ (на рисунке — ƒ'ob) и 2ƒ'. Это изображение можно зарегистрировать фотоаппаратом. Цель объектива — уловить удаленный предмет и разместить его изображение перед второй линзой, окуляром, которая действует как увеличительное стекло. Она располагается так, что изображение, порожденное объективом, попадает в третью область (между окуляром и его фокусом, ƒoc), и на его основе создается во много раз увеличенное мнимое изображение. На рисунке 14 (см. стр. 36) можно увидеть траекторию лучей. Объектив порождает точки А' и В', которые попадают в третью область окуляра, а он, в свою очередь, порождает мнимое изображение с точками А" и В".
АБЕРРАЦИЯ СВЕТА
Из-за аберрации сферическая линза не направляет все параллельные лучи света, попадающие на ее поверхность, к одной точке, и изображения получаются размытыми.
Чтобы повысить четкость картинки, необходимо скомбинировать отклонения, вызываемые рефракцией, с теми, что вызывает сама поверхность линзы. Край округлого стекла направляет лучи, проходящие близко от его центра, к одному фокусу.
Но по мере приближения лучей к краю линзы их расхождение