Обложка •Трактата о свете» Гюйгенса.
В этом труде содержатся чертежи линз, которые корректируют сферическую аберрацию.
ЗАКОН ПРЕЛОМЛЕНИЯ
Закон рефракции был сформулирован уже в 984 году персидским ученым Абу Сахлом в его «Книге о поджигательных инструментах», но никто из европейских астрономов не обратил внимания на этот труд.
В XVII веке закон был открыт вновь по меньшей мере три раза. В 1601 году это сделал Томас Хэрриотт, но он не опубликовал свои результаты.
В 1620 году Виллеброрд Снеллиус (или Снелль) повторил открытие, но рассказал о нем только узкому кругу счастливчиков, состоявших с ним в переписке. Декарт пришел к тем же выводам, что и его предшественники, в конце 1620-х годов. На сей раз он опубликовал статью на эту тему в одном из приложений к своему «Рассуждению о методе». Поскольку Декарт прожил некоторое время в Нидерландах, многие патриоты этой страны, в том числе и Гюйгенс, предполагали, что француз, воспользовавшись рассеянностью Снелля, успел прочитать его письма. Но это обвинение вряд ли можно считать правомерным. В любом случае, закон связан с именем Снелля.
Раньше всех остальных углы, которые образуют лучи света, проходящие сквозь поверхность воды, определил Птолемей. Он заметил, что при увеличении α увеличивается и β, при этом зависимость не была линейной. Птолемей не смог вывести математическую формулу, по которой, имея значение первого угла, можно вычислить значение второго. В своем «Трактате о свете» Гюйгенс использовал рисунок, приведенный выше, чтобы вывести закон о рефракции. На нем изображен луч света, проходящий через слой воздуха от А к О, где он касается горизонтальной поверхности стекла. Его траектория образует угол α с воображаемой вертикальной линией. Пересекая границу сред, луч отклоняется и проходит через стекло по прямой линии под меньшим углом, β, от О к D. Чтобы установить взаимосвязь между α и β, достаточно провести окружность с произвольным радиусом r. Соотношение между длинами отрезков АВ и СО будет постоянным для любой пары углов α и β и составляет примерно 1,52.
Для других пар сред это число будет своим. Так, при переходе от воздуха к воде оно равно 1,33. Соотношение между отрезками можно выразить на основе углов, используя тригонометрическую функцию синуса. По рисунку Гюйгенса,
Таким образом, закон Снелля можно записать как
sin α/sin β = 1,52.
Это уравнение позволяет получить угол преломления любого падающего луча.
Обычно объективы имеют довольно большие размеры. Чем больше поверхность линзы, тем больше света она соберет: это необходимое условие для получения изображения объектов, от которых исходит очень слабый свет, таких как звезды. Окуляр же имеет большую толщину и изгиб, чтобы сократить фокусное расстояние, сильнее отклонить свет и получить большее увеличение. До сих пор мы говорили о линзе определенного типа — двояковыпуклой. Она относится к сферическим линзам, которые представлены на рисунке 15
(a — двояковыпуклая, b — плоско-выпуклая, с — плоско-вогнутая, d — двояковогнутая и е — выпукло-вогнутая). Существуют также параболические (ƒ) и гиперболические (g) линзы.
Однако в природе лучи света ведут себя не так упорядоченно, как это изображается на рисунках. Телескопы с самого своего появления характеризовались сферической и хроматической аберрацией, и эти оптические дефекты снижали качество изображения.
Сферические линзы идеальны только в том случае, если лучи проходят через них вблизи от их центра с последующим сокращением поля зрения.
НА СЦЕНУ ВЫХОДИТ ГЮЙГЕНС
Изобретение телескопа не повлекло за собой автоматического подтверждения теории Коперника, но глубоко изменило аргументацию в спорах между противниками и сторонниками теории гелиоцентризма. Вселенная Аристотеля была построена на том, что человек мог видеть невооруженным глазом. То, что лежало вне этих пределов, описывалось с помощью удивительной комбинации логики и воображения. Греки высоко ценили сферические формы и потому считали, что Луна и планеты должны быть идеальными сферами. Одним из возражений против гелиоцентризма было то, что если Земля утрачивает свое центральное положение во Вселенной, почему же она сохраняет некоторые привилегии, например являясь единственной планетой со спутником? Начиная с 1610 года Галилей стал описывать настоящий облик Луны, с которого были сдернуты покровы тайны, наложенные расстоянием. Он разглядел ее кратеры и горы, а также открыл четыре спутника Юпитера. Телескоп безжалостно описывал новую Солнечную систему, опровергая тысячелетние теории, основанные на нехватке данных. Вдохновившись удивительными открытиями Галилея, Кеплер решил усовершенствовать телескоп. До того времени все улучшения делались методом проб и ошибок, но Кеплер не хотел ступать наугад. Он намеревался исправить недостатки линз и найти самые удачные их формы с помощью теоретических исследований, которые объяснили бы принцип их действия. К несчастью, для того чтобы прийти к успеху, ученому не хватало информации. Мы увидели, что, проходя от воздуха к стеклу, луч света отклоняется, но каково точное соотношение между углом падения и углом преломления, α и β? Ответ заключается в тригонометрической пропорции, законе Снелля, о котором Кеплер еще не знал в 1610 году, когда писал свой трактат «Диоптрика».
Я начал шлифовать обратную сторону неудачно: я взял слишком много воды вначале или не отшлифовал до нужного состояния. Мне удалось исправить ошибку, правда не до конца, шлифуя опять в нужной точке; но затем, продолжая работать, я опять все испортил.
Гюйгенс о процессе шлифования линз
РИС. 16
Рисунки, представленные выше, позволяют качественно проанализировать формирование изображений. С этой же целью использовались и чертежи, которые Кеплер поместил в свою «Диоптрику». Лучи света искажаются, падая на линзы, но как именно? Кеплер ответил на этот вопрос, только измеряя отклонения опытным путем. В результате он не смог создать общую теорию, ведь для того чтобы исследовать каждый случай, надо было располагать линзами со всеми возможными изгибами контура. Для того чтобы получить общие результаты, позволяющие говорить о любом типе лучей и линз, необходимо было знать точное математическое соотношение между углами рефракции.
Считается, что Декарт пришел к соотношению Снелля самостоятельно в конце 20-х годов XVII века, хотя споры об этом ведутся до сих пор. Ученый выявил закон, который уравновешивал в одном уравнении углы и лучи света, физику и геометрию, однако сам он предпочитал математический