Вы продукт всех своих действий, а не результат одной или нескольких ошибок. Применяйте к себе то же рациональное прощение, которое Байес просит вас применять к другим.
* * *Первый урок, который нужно извлечь из формулы Байеса (уравнения суждений), – не надо торопиться с выводами. Числа, которые я использовал в примере, влияют на результат, но не на саму логику. Вы можете спросить себя: какая доля людей, по-вашему, в целом хорошие? Как часто хорошие люди совершают ошибки? И как часто стервы поступают по-свински? Подставьте свои цифры в уравнение, и вы придете к тому же заключению: нужно больше, чем один грязный комментарий, чтобы поставить на человеке клеймо «стерва» или «сволочь».
Иногда мой руководитель ведет себя как козел. Иногда моим студентам как будто не хватает сосредоточенности. Порой кто-то из коллег хочет приписать себе мою идею, заявляя, что придумал это первым. Иногда председатель комиссии, где я состою, кажется мне неорганизованным: он тратит мое время на бесполезный неэффективный обмен электронными письмами. В таких ситуациях я использую уравнение суждений. Но я не вычисляю вероятность того, что каждый из моих коллег – скотина, рассеянный или некомпетентный. И не позволяю разовым событиям определять свои ощущения. Если я вижу, что некто, с кем я работаю, совершил ошибку, я жду развития ситуации. Вполне может оказаться, что неправ был я.
* * *Мы не можем понять «Десятку» без раскрытия ее истории и философии. История «Десятки» – рассказ о небольшой группе людей, которые передавали секреты рационального мышления из поколения в поколение. Они ставили масштабные вопросы. Они хотели знать, как мыслить яснее и точнее, уметь оценивать истинность того, что говорят люди. Они даже задавались вопросом, что значит быть истинным или ложным. Это история о действительно важных вопросах: природе реальности и месте этих людей в ней.
Это также рассказ о религии, о том, что такое хорошо и что такое плохо, об этике, о добре и зле.
Наша первая остановка – 1761 год. Валлийский философ Ричард Прайс обнаружил в бумагах недавно умершего друга (того самого Томаса Байеса) эссе, полное математических символов и философских размышлений, и один вопрос звучал так: как на основе данных о предыдущих событиях оценить вероятность того, что подобное произойдет снова? Прайс опубликовал его со своим приложением, где просил читателя представить «человека, только что появившегося в этом мире, который заключает из своих наблюдений за порядком и ходом событий, какие силы и причины в нем действуют». Спрашивается, как такой человек должен рассуждать, увидев восход в первый раз, во второй и в третий. Что он должен сказать о вероятности того, что солнце встает каждый день?
Вывод примечателен. Ежедневный восход солнца не должен привести нашего «только появившегося» человека к выводу, будто солнце будет вставать всегда. Наоборот, его умоляют быть очень осторожным с этим событием – даже после сотни восходов и целой жизни восходов. Ничто не должно быть само собой разумеющимся.
«Только появившемуся» человеку предлагалось дать оценку вероятности ежедневного наступления восхода с помощью некоторого параметра θ. Перед первым восходом человек не имеет никаких априорных представлений о солнце и должен считать все значения параметра θ равновозможными. В этот момент одинаково вероятно, что солнце поднимается каждый день (θ = 1), встает в половине дней (θ = 0,5) или только один раз из ста (θ = 0,01). Величина θ может принимать бесконечное число значений из интервала от 0 до 1 (все вероятности находятся в этом промежутке). Например, она может оказаться 0,8567, 0,1234792, 0,99999 и т. д. При этом число десятичных знаков любое, точность произвольна.
Далее человеку предлагается определить, какое значение тот сочтет минимальной правдоподобной вероятностью того, что солнце восходит ежедневно. Если человек думает, что шансы на восход превышают 50 %, то θ > 0,5. Если он считает, что они превысят 90 %, то θ > 0,9.
Теперь представим, что человек увидел 100 восходов подряд и пытается сделать из этого вывод о вероятности восхода в один день: он заявляет, что солнце поднимается чаще 99 раз из 100. Иными словами, он дает оценку θ > 0,99. Выражение P{θ > 0,99|100 восходов} определяет вероятность того, что он прав в своей оценке. Байес показал с помощью определенной разновидности уравнения 2, что P{θ > 0,99|100 восходов} = 1–0,99100+1 ≈ 63,8 %. Соответственно, с вероятностью 36,2 % наш человек ошибается и солнце встает реже, чем он полагает[26].
Если человек прожил 60 лет и видел восход солнца каждый день, он мог бы определенно быть уверен, что вероятность восхода солнца каждый день превышает 99 %. Но если он желает быть уверенным, что вероятность восхода солнца превосходит 99,99 %, мы бы посоветовали проявлять осторожность: 1–0,9999365×60+1 ≈ 88,8 %. Так что остается еще 11,2 %, что он ошибается. Мы заставляем новоприбывшего обитателя мира определить свою модель, высказать минимальное возможное значение θ, а затем сообщаем ему вероятность, с которой он прав в своем предположении.
Ричард Прайс осознал, что формула Байеса связана со спорами о чудесах, которые происходили в XVIII веке. Как и Байес, Прайс был священником и интересовался, как новые научные открытия того времени могут сочетаться с чудесами, в которые он верил после чтения Библии.
Десятилетием ранее философ Дэвид Юм утверждал, что «никакое свидетельство недостаточно для установления чуда, кроме такого, ложность которого была бы большим чудом, нежели тот факт, который оно стремится установить»[27]. Эти слова можно рассматривать как обращение к уравнению суждений. Он просит нас сравнивать модель M, что чудеса происходят, с альтернативной моделью M–, что они не происходят. Юм говорит, что, поскольку мы никогда раньше не были свидетелями чуда, P{M–}близка к 1, а P{M} очень мала, поэтому, чтобы убедить нас в обратном, понадобится очень серьезное чудо, у которого будет очень большая P{Д|M} и маленькая P{Д|M–}. Аргументация Юма очень близка к моим рассуждениям о болтанке в начале этой главы: нужны очень веские доказательства, чтобы убедить нас, что в целом надежный самолет разобьется. Нам необходимы очень веские доказательства, чтобы убедить нас, что Иисус Христос воскрес.
Прайс счел, что рассуждения Юма «противоречат разуму»[28], что Юм неправильно понял Байеса. Он объяснял, что Юму следовало быть более точным, когда он говорит о θ – вероятности чуда. Даже те, кто верит в чудеса, не считают, что они происходят каждый день. Конкретизируем: представьте, что Прайс предложил Юму дать какую-то оценку частоте чудес, а тот говорит, что они случаются реже одного раза в 10 миллионов дней (27 400 лет), что дает θ > 99,99999 %. Предположим, Прайс верит, что 99,99999 % > θ > 99,999 %, то есть в то, что чудеса происходят реже, чем раз в 274 года, но чаще, чем раз в 27 400 лет. Теперь представьте, что 2000 лет подряд не происходило ни одного чуда. Вероятность