4 страница из 32
Тема
автобиографию под названием De vita propria («Моя жизнь»). В отличие от многих современников, Кардано добился определенной известности, особенно как врач. Будучи настоящим представителем эпохи Возрождения, он интересовался многими науками, пытаясь охватить все знания, известные в то время. Однако весьма часто ему не удавалось избавиться от наивного, иррационального взгляда на вещи, а порой и предрассудков, что сделало его крайне противоречивой фигурой.

Среди его работ по математике выделим трактат «Великое искусство» (Ars magna), опубликованный в 1545 году. Это один из основных трудов эпохи Возрождения по алгебре. До этого, в 1539 году, он написал другую книгу под названием «Практическая арифметика» (Practica Arithmetica). Он также является автором одной из первых книг об играх и математике — «Книги об азартных играх» (Liber de ludo aleae), где впервые описываются вопросы, связанные с вероятностями, применительно к играм в кости. Приведенные им решения остроумны, но порой ошибочны. Эту книгу Кардано написал около 1564 года, но ее опубликовали лишь столетие спустя, включив в его первое полное собрание сочинений. Эта книга, которую можно считать первой работой о вероятностях, не вызвала такого отклика, как работы Паскаля и Ферма. Считается, что в переписке этих двух математиков азартные игры впервые анализируются с точки зрения теории вероятностей.

Фронтиспис книги Джероламо Кардано «Великое искусство»(Ars magna).


Хотя Тарталья не занимался анализом азартных игр целенаправленно в том смысле, как это делал Кардано, в своей книге Quesiti et inventioni diverse («Проблемы и различные изобретения», 1546) он предлагает читателю задачи и загадки, многие из которых популярны и в наши дни, например:

У некоего человека 17 лошадей. Он оставляет их в наследство сыновьям, завещав разделить коней между ними в пропорции 1/2, 1/3 и 1/9. Как сыновьям поделить наследство?

У некоего человека три фазана. Он хочет разделить их между двумя отцами и двумя сыновьями так, чтобы каждому из них достался фазан. Как это сделать?

Несомненно, одним из первых математиков, пытавшихся формально проанализировать азартные игры, был именно Кардано — возможно, наиболее одаренный и разносторонний математик того времени. Однако его работа об играх увидела свет лишь спустя столетие после его смерти, поэтому не привлекла заслуженного внимания. По-видимому, Кардано первым сформулировал задачу о разделении ставок, приведя также ее ошибочное решение, в котором уделено внимание подсчету очков каждого игрока, а не вероятностям выигрыша. Эту задачу также обсуждали в переписке Паскаль и Ферма. Мы поговорим о ней в главе 3.

Помимо итальянских алгебраистов, упоминания заслуживает французский математик Николя Шюке, в своей книге «Наука о числах в трех частях» (1484) представивший занимательные задачи, среди которых впервые упоминаются задачи на переливание. Приведем одну из них.

Даны два сосуда. Один вмещает 3 пинты, второй — 5. Как отмерить ровно 4 пинты с помощью переливаний? Ни на одном из сосудов нет никаких отметок, и все, что мы можем определить, — это заполнен сосуд полностью или нет.

Наконец, нужно упомянуть о Роберте Рекорде (1510—1558), математике из Уэльса, который, подобно Кардано, прожил очень интересную жизнь. Как и многие ученые мужи Возрождения, он занимался разными науками, в частности астрономией и медициной. Рекорд известен тем, что в своем труде The Whetstone of Witte («Точильный камень остроумия», 1557) впервые использовал знак «=» для обозначения равенства, указав, что нет ничего более равного между собой, чем две параллельные прямые. Хотя представить современную алгебру без этого знака непросто, он далеко не сразу стал использоваться повсеместно. Даже в XVIII веке наряду с ныне привычным обозначением встречались и другие, например ае (начальные буквы слова aequo — «равно»). В этой книге описываются занимательные задачи, которые по большей части решаются алгебраическими методами.

Игры и математика с XVII века до наших дней

Серьезная и занимательная математика существовали бок о бок с древнейших времен. Однако в начале XVII века появляется особое ответвление, посвященное анализу игр. Как уже говорилось в начале предыдущего раздела, в 1612 году была опубликована первая книга, посвященная исключительно занимательной математике, — Problemes plaisants et delectables qui se font par les nombres Клода Гаспара Баше де Мезириака (1581—1638). Этот математик, поэт и переводчик, который был одним из первых членов Французской академии наук, известен не только как автор этой книги, но и как автор комментария к переводу «Арифметики» Диофанта с греческого на латинский язык (1621). На полях одного из экземпляров именно этой книги Ферма записал свою знаменитую теорему (подробнее о нем мы поговорим в главе 3).

Обложка книги«Арифметика»Диофанта на латинском языке с комментариями Баше де Мезириака.


Золотой век математических игр: XVII и XVIII века

Книга де Мезириака — своеобразный конспект по занимательной математике той эпохи. В ней описана задача о волке, козе и капусте, магические квадраты, задачи о целых числах и взвешиваниях, например: «Найти минимальное число гирь и их массу, с помощью которых на простых весах с двумя чашками можно измерить любой вес, выраженный целым числом от 1 до 40».

Начиная с этого момента, уже в XVII веке появляется множество книг похожего стиля. В 1624 году Анри ван Эттен (это псевдоним французского иезуита Жана Лёрешона) опубликовал книгу Recreations mathematiques («Развлекательная математика»), которая стала более успешной, чем книга Баше, и послужила образцом для последующих изданий, среди которых работа Клода Мидоржа, изданная во Франции в 1630 году и переведенная на английский уже в 1633 году, или работа Даниэля Швентера, опубликованная в 1636 году в Германии. Но самой известной в XVIII и XIX веках стала книга Жака Озанама Recreations mathematiques et physiques («Математические и физические развлечения»), которую в 1725 году отредактировал и дополнил математик и историк науки Жан Этьен Монтукля.

Среди трудов XVIII века упоминания заслуживает книга Rational Recreations Уильяма Хупера («Рациональные развлечения», 1774), где впервые упоминается одна из задач об исчезновении клетки — великолепный пример того, как для решения простой с виду задачи используются интересные математические свойства.

Портрет математика и лингвиста Даниэля Швентера.


Хотя мы перечислили некоторых авторов книг об играх и занимательной математике, не будем забывать, что многие великие математики XVII—XIX веков сформулировали и впоследствии решили задачи, ставшие классикой жанра. Наиболее выдающиеся среди них — Исаак Ньютон (1642—1727), Леонард Эйлер (1707— 1783) и Карл Фридрих Гаусс (1777—1855).

Ньютон в своей книге Arithmetica Universalis («Универсальная арифметика»), написанной на латыни в 1707 году, наряду с важными для математики проблемами упоминает и о простейших занимательных задачах. Хотя наиболее известна так называемая задача о коровах, ниже мы приведем другую задачу, где показывается связь вероятностей и азартных игр. Одновременно бросается некоторое число обычных игральных костей. Вероятность какого из следующих событий наибольшая?

1) При броске 6 кубиков выпадет

Добавить цитату