Теория игр появилась в работах Джона фон Неймана, в частности в книге «Теория игр и экономическое поведение», опубликованной им совместно с экономистом Оскаром Моргенштерном в 1944 году. Изначально в теории игр шла речь об абстрактных играх для двух и более игроков, где определены выигрыш и проигрыш для каждого игрока в зависимости от совершенного хода. Как правило, игроки ходят одновременно и не знают стратегию соперников. Эти игры, используемые как математические модели, изначально применялись при анализе экономических ситуаций. Фон Нейман и Моргенштерн показали способ определения оптимальной стратегии для каждого игрока в играх этого типа. Фон Нейман предложил для решения этих задач так называемый принцип минимакса, а также расширил его для игр, в которых присутствуют случайные события (так называемые смешанные стратегии). Его методы оказались столь успешными, что математики и экономисты начали применять их при решении более сложных задач.
Прикладные методы из мира экономики, работающие на довольно простых моделях, непрерывно развивались на протяжении второй половины XX века. С появлением игр, в которых выигрыш одного игрока не обязательно означает проигрыш других, возникла идея о сотрудничестве, точнее сказать, о компромиссе между соперничеством и сотрудничеством. Так теоретические модели все больше приближались к реальности и постепенно начали находить применение не только в экономических науках, но и в военной сфере, политике, эволюционной биологии и даже в философии. Все эти научные дисциплины, столь далекие друг от друга, схожи в одном: они предполагают принятие решений в ситуациях, которые можно рассматривать как игры. Но в этом случае само слово «игра» обозначает уже не что-то развлекательное, но нечто рискованное. По мере того как формулировки этих игр приближались к реальности и, как следствие, усложнялись, они стали допускать решения, в которых учитываются не только математические параметры, но и моральные, этические и философские принципы поведения человека.
Джон фон Нейман на одной из лекций в Американском философском обществе, членом которого он являлся.
Одним из самых интересных аспектов теории игр, помимо ее порой удивительных результатов, является возможность вмешиваться в сферу действия общественных наук, которые по своей природе имеют дело со случайными событиями и где переменные описывают поведение отдельных личностей и групп людей. Так, развитие теории игр привело к появлению множества дилемм, которые касаются выбора между конфликтом, риском и сотрудничеством. В силу применимости к большому числу ситуаций подобные дилеммы составляют значительную часть теории игр. Среди наиболее известных отметим игру «Ястребы и голуби» и дилемму заключенного, о которых рассказывается в последней главе этой книги. Эти дилеммы некоторым образом показывают, насколько сложно изучать поведение человека. Они демонстрируют, что порой возможно не только изучить действия человека, но и определить их последствия, особенно когда они зависят от сочетания стратегий, используемых участниками.
Глава 2. Стратегические игры и решение задач
...Занимательная математика — это не только... разумное средство заполнения досуга взрослых людей. Занимательная математика — это прежде всего математика, причем в лучших своих образцах математика прекрасная. Недаром видный английский математик Дж. Литлвуд заметил, что хорошая математическая шутка лучше дюжины посредственных работ.
Мартин Гарднер
Игры можно классифицировать различными способами в зависимости от выбранного критерия: место для игры, число участников, длительность партии, уровень сложности и так далее. Применительно к математике игры можно разделить на две большие группы в зависимости от того, присутствуют в них случайные события или нет. Случайные события могут фигурировать как в начальных условиях игры, так и при совершении ходов. Например, в большинстве карточных игр карты раздаются игрокам случайным образом. Так же происходит и в домино. Напротив, начальное положение шахматных фигур строго определено и неизменно, как и в нардах, реверси или испанской игре парчис. Если говорить о случайности ходов, то во многих играх игроки свободно выбирают следующий ход из всех возможных, в то время как в других играх ходы зависят от броска одной или нескольких игральных костей. В этом случае игрок выбирает лишь из нескольких ходов, возможных для выпавшего числа очков на игральных костях.
Костяшки домино XIX века. Домино — одна из игр, где случай вмешивается лишь на этапе выбора костяшек, в дальнейшем все зависит исключительно от умения игроков.
Стратегическими называются игры, в которых никогда не происходит случайных событий. Всё определяют только решения игроков. Благодаря отсутствию случайности, игры этого типа можно проанализировать и найти способ победить. В некоторых случаях можно полностью определить выигрышную стратегию, в других ввиду сложности игры это не удастся, но можно показать, что подобная стратегия существует для одного из игроков. Несмотря на очевидное разнообразие игр такого типа, к ним применимо ограниченное число математических понятий и приемов, которые относятся преимущественно к арифметике (системы счисления и признаки делимости) и геометрии (равновесные ситуации, главным образом, симметрия).
Понятие выигрышной стратегии
В математике слово «игра» может обозначать как собственно игру, в которой участвует более одного игрока, имеются определенные правила, а цель игры — одержать победу в партии, так и математические развлечения и головоломки. В дальнейшем мы будем говорить об играх, в которых участвуют минимум два игрока. Эти игры также можно разбить на группы разными способами, но с точки зрения математики существует признак, определяющий две большие группы: игры с полной информацией и игры, в которых присутствует элемент неопределенности. В этой главе игры первой группы мы будем называть стратегическими, игры второй группы — азартными.
Как следует изучив игру, мы задаемся вопросом: какие ходы нужно совершать, чтобы одержать победу в определенной партии? В азартных играх (например, в классической игре «Змеи и лестницы») этот вопрос не имеет смысла, поскольку игроки лишь двигают фишки согласно выпавшим очкам на игральных костях и следуют инструкциям на игровых клетках. Иными словами, здесь нет места для принятия решений, поэтому нет «хороших» или «плохих» игроков. Результат игр подобного типа полностью зависит от случая, поэтому определить какую-либо выигрышную стратегию невозможно. В этом смысле можно сказать, что интересность игры с точки зрения математики равна нулю.
Другой крайний случай — игры с полной информацией, в которых в любой момент можно узнать все возможные ходы и их последствия (как минимум в теории) и нет места неопределенности. Из всех подобных игр нам больше всего знакомы шахматы, хотя подобных стратегических игр, как традиционных (го, манкала, шашки, крестики-нолики), так и современных (гекс, ним, реверси, абалон и другие), существует великое множество.
Картина времен династии Юань (XIII-XIV века), изображающая трех игроков в го.
Когда мы говорили об анализе игр этого типа, мы упомянули понятие выигрышной стратегии, то есть множества условий, позволяющих одному из игроков (как правило, речь идет об играх только для двух