Звучит странно, но лучшие предсказания классической теории сходились на том, что полость, полная излучения, на самых коротких длинах волн должна всегда обладать бесконечным количеством энергии – и вместо пика в спектре абсолютно черного тела и падения энергии до нуля при нулевой длине волны измерения должны зашкалить на коротковолновом участке. Эти вычисления были основаны на кажущемся естественным предположении, что электромагнитные волны излучения в полости могут рассматриваться таким же образом, как колебания струны, например струны скрипки, и что могут существовать волны любого размера – любой длины волны и частоты. Поскольку необходимо учесть очень много различных длин волн (много «колебательных мод»), законы статистической механики должны быть перенесены из мира частиц в мир волн, с тем чтобы предсказать поведение излучения в полости, и это напрямую ведет к выводу, что энергия, испускаемая на каждой частоте, прямо пропорциональна ей. Частота является всего лишь обратной величиной от длины волны, и очень короткие длины волн означают очень высокие частоты. Поэтому полное излучение абсолютно черного тела должно давать огромное количество высокочастотной энергии – то есть в зоне ультрафиолета и далее. Чем больше частота, тем больше энергия. Это предсказание называется ультрафиолетовой катастрофой и показывает, что в предположениях, на которых оно основано, присутствует какая-то ошибка.
Однако не все потеряно. На низкочастотном участке спектра абсолютно черного тела наблюдения очень хорошо согласуются с предсказаниями, основанными на классической теории и известными как закон Рэлея – Джинса. По крайней мере, классическая теория верна наполовину. Загадка в том, почему энергия колебаний на высоких частотах не является очень большой и в действительности падает до нуля, по мере того как увеличивается частота излучения.
Эта загадка привлекла внимание многих физиков последнего десятилетия XIX века. Одним из них был немецкий физик старой школы Макс Планк. Будучи трудолюбивым и основательным, Планк был по духу консерватором, а не революционером. Он питал особенный интерес к термодинамике, и самой главной его надеждой в то время было разрешить ультрафиолетовую катастрофу, применив законы термодинамики. В конце 1890-х годов было известно два приблизительных уравнения, которые вместе давали грубое выражение спектра абсолютно черного тела. Ранняя версия закона Рэлея – Джинса работала при больших длинах волн, а Вильгельм Вин предложил формулу, которая примерно соответствовала наблюдениям при малых длинах волн, а также «предсказал» длину волны, соответствующую пику кривой при любой температуре. Планк начал с исследования того, как маленькие электрические осцилляторы должны поглощать и излучать электромагнитные волны, – этот подход отличался от того, который Рэлей использовал в 1900 году, а Джинс немного позже, – но именно он привел к получению стандартной кривой, заканчивающейся ультрафиолетовой катастрофой. С 1895 по 1900 год Планк изучал эту проблему и опубликовал несколько ключевых работ, которые определили связь между термодинамикой и электродинамикой, – и все же он не мог разрешить загадку спектра абсолютно черного тела. В 1900 году он совершил прорыв, но не благодаря спокойному и взвешенному логическому подходу, а в результате удачного стечения обстоятельств: в отчаянии он смешал удачу и вдохновение с одним из использовавшихся им математических инструментов, который он, к счастью, понимал неправильно.
Конечно, никто сегодня не может точно знать, что творилось в голове Планка, когда он сделал революционный шаг, ведущий к квантовой механике, но его работа была тщательно изучена историком Мартином Кляйном из ħельского университета, который специализируется на истории физики периода рождения квантовой теории. Кляйн, вероятно, точнее всего воссоздал роли, которые сыграли Планк и Эйнштейн в этом рождении, и это ставит открытие в убедительный исторический контекст. Первый шаг, сделанный в конце лета 1900 года, не был связан с удачей и был обязан всем вдохновению талантливого физика-математика. Планк понял, что два неполных описания спектра абсолютно черного тела могут быть связаны одной простой математической формулой, которая описывала форму всей кривой, – в действительности он использовал небольшой математический фокус, чтобы свести воедино две формулы: закон смещения Вина и закон Рэлея – Джинса. Это был большой успех. Уравнение Планка прекрасно согласовывалось с наблюдениями излучения абсолютно твердого тела. Однако в отличие от двух полузаконов, на которых оно базировалось, в нем не было физической основы. И Вин, и Рэлей, и даже Планк в предшествующие четыре года пытались построить на основе разумных физических предположений теорию, которая вела бы к кривой абсолютно черного тела. Теперь же Планк вытащил правильную кривую из шляпы, и никто не знал, какие физические допущения «присутствовали» в этой кривой. Выяснилось, что они были совершенно «неразумны».
Непрошеная революция
Формула Планка была представлена публике в октябре 1900 года на собрании Берлинского физического общества. Следующие два месяца Планк пытался найти физическую основу для закона, пробуя различные комбинации физических допущений, чтобы найти те, которые бы согласовывались с математическими уравнениями. Позже он заметил, что это был самый интенсивный период работы за всю его жизнь. Многие попытки провалились, пока наконец у Планка не осталась лишь одна – менее всего желанная для него – альтернатива.
Я упоминал, что Планк был физиком старой школы, и это правда. В своих ранних работах он неохотно принимал молекулярную гипотезу и питал особенное отвращение к статистической интерпретации свойства, известного как энтропия – эту интерпретацию в термодинамику ввел Больцман. Энтропия является ключевым понятием физики, в фундаментальном смысле соотносящимся с течением времени. Хотя простые законы механики – законы Ньютона – являются полностью обратимыми во времени, мы знаем, что реальный мир другой. Представьте себе камень, брошенный на землю. Когда он падает, энергия его движения превращается в тепло. Но если мы положим такой же камень на землю и нагреем его до той же величины, он не подпрыгнет в воздух. Почему? В случае с падающим камнем упорядоченная форма движения (все атомы и молекулы падают в одном направлении) превращается в беспорядочную