Рис. 1.2. Круговые возмущения, подобные тем, что создает камень, брошенный в пруд, распространяются подобно круговым волнам с центром в точке, где они проходят через узкое отверстие (и, разумеется, волны, наталкивающиеся на препятствие, отражаются обратно).
В XVIII веке очень немногие воспринимали волновую теорию света всерьез. Одним из тех, кто не только принимал ее всерьез, но и писал работы в ее поддержку, был швейцарец Леонард Эйлер – ведущий математик своего времени, внесший значительный вклад в развитие геометрии, математического анализа и тригонометрии. Современная математика и физика записываются на языке арифметики при помощи уравнений. Методы, на которых в значительной степени основывается это арифметическое описание, были развиты Эйлером, и в процессе работы над ними он ввел несколько удобных способов записи, дошедших и до наших дней, – число «пи» для отношения длины окружности к ее диаметру, символ ί для квадратного корня из минус единицы (мы встретимся с ним, как и с числом «пи», чуть позже), а также символы, используемые математиками для обозначения операции интегрирования. Забавно, но статья об Эйлере в Британской энциклопедии не упоминает о его взглядах на волновую теорию света, которых, по словам современников, не придерживался «ни один великий физик»[1]. Единственным значительным современником Эйлера, который разделял эти взгляды, был Бенджамин Франклин. Однако физикам удавалось легко игнорировать их, пока в начале девятнадцатого столетия англичанином Томасом Юнгом, а чуть позже французом Огюстеном Френелем не были проведены новые важные эксперименты.
Торжество волновой теории
Юнг использовал знание того, как волны движутся по поверхности пруда, чтобы разработать эксперимент, позволяющий проверить, ведет ли свет себя таким же образом. Мы все знаем, как выглядит волна воды, однако важно представить себе именно рябь, а не большую волну, чтобы аналогия была верной. Отличительной особенностью волны является то, что она слегка поднимает уровень воды, а затем, уходя, опускает. Высота гребня волны над уровнем невозмущенной водной поверхности является ее амплитудой, и для идеальной волны она равна высоте, на которую уровень воды снижается, когда волна отходит. Волны, идущие друг за другом, подобно тем, что отходят от камня, брошенного в пруд, имеют одинаковые промежутки, называемые длиной волны, которая измеряется как расстояние от одного гребня до другого. От места, в котором камень попал вводу, волны начинают распространяться кругами, тогда как волны на море или рябь от ветра на озере могут двигаться последовательными прямыми линиями, параллельными волнами, одна задругой.
Рис. 1.3. Способность волн огибать углы также означает, что они могут быстро заполнять тень позади препятствия, если только препятствие по размерам значительно не превышает длину волны.
Иными словами, число гребней, проходящих через некоторую фиксированную точку (вроде скалы) в секунду, показывает нам частоту волны. Частота – это число длин волн, проходящих каждую секунду, соответственно, скорость волны, то есть скорость движения каждого гребня, – это произведение длины волны и ее частоты.
Рис. 1.4. Способность света дифрагировать на углах и маленьких отверстиях может быть проверена при помощи одиночной прорези для образования круговой волны и двух прорезей для возникновения интерференции.
Краеугольный эксперимент начинается с параллельно идущих волн, сходных с полосами волн, набегающих на пляж до того, как они обрушиваются. Вы можете представить себе эти волны, вообразив, что они исходят от очень большого объекта, упавшего в воду очень далеко от берега. «Рябь», распространяющаяся расширяющимися кругами, кажется параллельными, или плоскими, волнами, если находиться достаточно далеко от источника волн, поскольку трудно определить кривизну очень большого круга с центром в месте источника возмущений. Легко проверить, что происходит с такими волнами в емкости с водой, когда на их пути помещено препятствие. Если препятствие маленькое, то волны огибают его и оказываются позади из-за дифракции, оставляя очень маленькую «тень». Однако если преграда велика в сравнении с длиной волн, то они лишь слегка огибают ее, оставляя зону невозмущенной воды. Если свет – это волна, то появление теней с резкими углами все же возможно, при условии, что длина волны света гораздо меньше, чем размер объекта, отбрасывающего тень.
Рис. 1.5. Подобно водной ряби, проходящей через отверстие, волны света, распространяющиеся кругами от первой прорези, движутся «друг за другом».
Теперь посмотрим на это с другой стороны. Представим обычную последовательность волн, распространяющихся в емкости с водой и наталкивающихся не на препятствие, окруженное водой, а на сплошную стену на их пути, имеющую в центре промежуток. Если промежуток гораздо больше, чем длина волны, то дальше пройдет лишь та часть волны, которая умещается в него, при этом незначительно расширяясь, однако оставляя большую часть воды по ту сторону преграды невозмущенной – подобно волнам, приходящим к проему в стене бухты. Однако если промежуток в стене очень мал, то отверстие ведет себя как новый источник круговых волн, будто в этом месте в воду бросают гальку. На дальней стороне стены эта круговая волна (или, точнее, полукруговая) распространяется по всей поверхности воды, не оставляя невозмущенной зоны.
Рис. 1.6. Круговые волны, исходящие от каждого из отверстий в экране с двумя прорезями, интерферируют, создавая картину из светлых и темных полос на белом экране обзора. Это ясно доказывает, что в рамках эксперимента свет ведет себя как волна.
Пока все сходится. Теперь мы наконец подбираемся к опыту Юнга. Представим ту же конструкцию с емкостью с водой и параллельными волнами, движущимися к препятствию, но теперь в нем сделано уже две маленькие прорези. Каждая из прорезей ведет себя как новый источник полукруговых волн в области позади препятствия, и поскольку эти две вторичные волны являются производными одной плоской волны с другой стороны препятствия, они движутся согласованно, или в фазе.