8 страница из 69
Тема
течение нескольких часов после того, как его поместили в темноту. Было естественно поискать связь между фосфоресценцией и рентгеновским излучением, но открытие Беккереля стало столь же неожиданным, как и само открытие рентгеновских лучей.

Радиоактивность

В феврале 1896 года он обернул фотографическую пластину двойным слоем черной бумаги, пропитал бумагу бисульфатом урана и калия и оставил все это на несколько часов под солнцем. Когда он достал пластину, на ней видна была граница пропитанной химикатами области. Беккерель решил, что солнце привело к возникновению рентгеновского излучения в слое химикатов – соли урана – по тому же принципу, по которому возникает фосфоресцирование. Через два дня он таким же образом подготовил еще одну пластину для повторения опыта, но в тот день и на следующий небо было затянуто облаками, а потому подготовленная пластина осталась в его кабинете. Первого марта Беккерель вытащил пластину и снова обнаружил на ней границу соли урана. Что бы ни воздействовало на обе пластины, это не имело отношения к солнечному свету или эффекту фосфоресцирования, а, как выяснилось, было ранее неизвестной формой излучения, которое производил сам уран – спонтанно, без какого-либо внешнего воздействия. Сейчас эта способность к спонтанному излучению называется радиоактивностью.

Вдохновленные открытием Беккереля, другие ученые принялись за изучение радиоактивности, и вскоре экспертами в новой ветви науки стали Мария и Пьер Кюри, работавшие в Сорбонне. За изучение радиоактивности и открытие новых радиоактивных элементов они в 1903 году получили Нобелевскую премию по физике, а в 1911 году Мария получила вторую Нобелевскую премию – уже по химии – за дальнейшую работу с радиоактивными материалами (в 1930-х годах дочь Марии и Пьера Кюри Ирен тоже получила Нобелевскую премию за изучение радиоактивности). В начале 1900-х годов экспериментальные открытия в сфере радиоактивности значительно опережали теорию: целая серия практических результатов лишь позже оказалась подкреплена теоретическими знаниями. В этот период один человек особенно выделялся своими исследованиями радиоактивности, и это был Эрнест Резерфорд.

Резерфорд происходил из Новой Зеландии и в 1890-х годах работал вместе с Томсоном в Кавендишской лаборатории. В 1898 году он стал профессором физики в университете Макгилла в Монреале, и там в 1902 году вместе с Фредериком Содди доказал, что радиоактивность предполагает трансформацию радиоактивного элемента в другой элемент. Именно Резерфорд выяснил, что в процессе радиоактивного «распада» (как он теперь называется) производится два типа излучения, которые он назвал альфа– и бета-излучениями. Когда позже был открыт третий тип излучения, его, естественно, назвали гамма-излучением. Альфа– и бета-излучения, как выяснилось, представляли собой поток быстро двигавшихся частиц. Вскоре было доказано, что бета-лучи представляют собой электроны и являются радиоактивным эквивалентом катодных лучей, а затем доказали, что гамма-лучи – это еще одна форма электромагнитного излучения, подобная рентгеновским лучам, но с еще более короткой длиной волны. Альфа-частицы, однако, оказались чем-то совершенно иным – масса этих частиц примерно в четыре раза превышала массу атома водорода, а электрический заряд был в два раза больше заряда электрона, при этом будучи положительным, а не отрицательным.

Внутри атома

Никто еще не знал, что представляют собой альфа-частицы или как они на огромной скорости испускаются атомом, который в процессе этого превращается в атом другого элемента, но исследователи вроде Резерфорда нашли им применение. Такие высокоэнергетические частицы, будучи продуктом атомных реакций, могли использоваться в качестве моделей для изучения структуры атомов и, в очередной раз подтверждая цикличность научных исследований, помочь выяснить, откуда появляются сами альфа-частицы. В 1907 году Резерфорд уехал из Монреаля и стал профессором физики в университете Манчестера в Англии, а в 1908 году получил Нобелевскую премию по химии за свои исследования радиоактивности, и это позабавило ученого. Хотя изучение элементов рассматривалось Нобелевским комитетом как работа в области химии, сам Резерфорд считал себя физиком и не уделял химии, которая казалась ему наукой второго сорта, особенного внимания. (Новое понимание структуры атомов и молекул, предоставленное квантовой физикой, конечно, лишь подтвердило старую физическую шутку о том, что химия – это лишь ветвь физики.) В 1909 году Ханс Гейгер и Эрнест Марсден, работавшие на кафедре Резерфорда в Манчестере, провели серию опытов, в которых пучок альфа-частиц был направлен на тонкую металлическую фольгу и сквозь нее. В опытах использовались альфа-частицы, излучаемые естественно радиоактивными атомами, ведь в те времена еще не было генераторов искусственных частиц. Судьба частиц, направленных на металлическую фольгу, определялась сцинтилляционными детекторами, флуоресцентными экранами, которые вспыхивали при столкновении с такой частицей. Некоторые частицы прошли прямо сквозь фольгу, другие отклонились и прошли под углом к изначальному пучку, а третьи, к удивлению экспериментаторов, отразились от фольги и остались на той же стороне, с которой ее поразил пучок. Как это могло произойти?

Резерфорд дал этому объяснение. Каждая альфа-частица обладает массой, в 7000 раз превышающей массу электрона (фактически альфа-частица идентична атому гелия без двух электронов), и может двигаться на скорости, близкой к скорости света. Если такая частица сталкивается с электроном, она отбрасывает электрон в сторону и продолжает движение без каких-либо изменений. Отклонения должны объясняться положительным зарядом атомов металлической фольги (одинаковые заряды, как и одинаковые магнитные поля, отталкиваются друг от друга), но если арбузная модель Томсона была верной, частицы не могли отражаться. Если атом заполняла сфера положительного заряда, то альфа-частицы должны были проходить сквозь нее, ведь опыт показал, что большая часть частиц проходила прямо сквозь фольгу. Если арбуз пропустил сквозь себя одну частицу, он должен был пропустить и все остальные. Но если весь положительный заряд концентрировался в крошечном объеме, гораздо меньшем, чем объем целого атома, то время от времени альфа-частицы, со всего разбега налетающие на этот маленький сгусток материи и заряда, должны были отскакивать назад, в то время как большая часть альфа-частиц проходила бы сквозь пустое пространство между этими сгустками материи. Только таким образом положительный заряд атома мог иногда отталкивать положительно заряженные альфа-частицы, порой слегка сбивая их с пути, а порой практически не оказывая на них влияния.

Итак, в 1911 году Резерфорд предложил новую модель атома, которая стала основой нашего современного понимания атомной структуры. Он заявил, что в атоме должен быть маленький центр, который он назвал ядром. Ядро содержит в себе весь положительный заряд атома, который равен и противоположен отрицательному заряду облака электронов, окружающего ядро, и таким образом вместе ядро и электроны формируют электрически нейтральный атом. Последующие эксперименты показали, что размер ядра составляет всего около одной стотысячной размера всего атома: диаметр ядра обычно равняется 10-13 см, а диаметр облака электронов – 10-8 см. Чтобы вообразить себе это, представьте булавочную головку диаметром около миллиметра в центре собора

Добавить цитату