5 страница из 9
Тема
«Статистическое моделирование: две культуры»{2}. В ней он охарактеризовал традиционный подход к статистике как культуру моделирования данных, которая предполагает основной целью анализа выявление скрытых стохастических моделей (например, линейной регрессии), объясняющих, как были сгенерированы данные. Брейман противопоставляет это культуре алгоритмического моделирования, которая фокусируется на использовании компьютерных алгоритмов для создания более точных моделей прогнозирования, не объясняющих то, как данные были получены. Проведенная Брейманом граница между статистическими моделями, которые объясняют данные, и алгоритмическими, которые могут их точно прогнозировать, подчеркивает коренное различие между статистиками и исследователями машинного обучения. Споры между этими двумя подходами не утихают до сих пор{3}. В целом сегодня большинство проектов, осуществляемых в рамках науки о данных, соответствует подходу машинного обучения к построению точных моделей прогнозирования и все меньше озабочены статистическим объяснением. Таким образом, хотя наука о данных родилась в дискуссиях вокруг статистики и до сих пор заимствует некоторые статистические методы и модели, со временем она разработала свой собственный, особый подход к анализу данных.

С 2001 г. концепция науки о данных значительно расширилась и вышла за пределы модификаций статистики. Например, в последние 10 лет наблюдается колоссальный рост объема данных, генерируемых онлайн-активностью (интернет-магазинами, социальными сетями или развлечениями). Чтобы собрать эту информацию (порой неструктурированную) из внешних веб-источников, подготовить и очистить ее для использования в проектах по анализу данных, специалистам по данным требуются навыки программирования и взлома. Кроме того, появление больших данных означает, что специалист по данным должен уметь работать с такими технологиями, как Hadoop. Фактически сегодня понятие «специалист по данным» стало настолько широким, что вызвало настоящие дебаты о том, как определить его роль и требуемые опыт и навыки{4}. Тем не менее можно перечислить их, опираясь на мнение большинства людей, как это сделано на рис. 1. Одному человеку трудно овладеть всем перечисленным, и большинство специалистов по данным действительно обладают глубокими знаниями и реальным опытом только в некоторых из этих областей. При этом важно понимать и осознавать вклад каждой из них в проекты по обработке данных.



Специалист по данным должен иметь экспертный опыт в предметной сфере. Большинство проектов начинаются с реальной проблемы и необходимости разработать ее решения. Специалист по данным должен понимать и проблему, и то, как ее решение могло бы вписаться в организационные процессы. Этот экспертный опыт направляет специалиста при поиске оптимального решения. Он также позволяет конструктивно взаимодействовать с отраслевыми экспертами, чтобы докопаться до самой сути проблемы. Кроме того, специалист по данным может использовать его в работе над аналогичными проектами в той же или смежной областях и быстро определять их фокус и охват.

В центре всех проектов науки о данных находятся сами данные. Однако тот факт, что организация имеет доступ к данным, не означает, что у нее есть формальное или этическое право на их использование. В большинстве юрисдикций существует антидискриминационное законодательство и законы о защите персональных данных. Специалист по данным должен знать и понимать эти правила, а также (в более широком смысле) понимать этические последствия своей работы, если хочет использовать данные на законных основаниях и надлежащим образом. Мы вернемся к этой теме в главе 7, где обсудим правовые нормы и этические вопросы, связанные с наукой о данных.

В большинстве организаций значительная часть данных поступает из баз, размещенных внутри самой организации. Но по мере роста архитектуры данных проекты начнут получать их из множества других источников, в том числе из источников больших данных. Данные в этих источниках могут существовать в различных форматах, но, как правило, представляют собой базы на основе реляционной модели, NoSQL или Hadoop. Эти данные должны быть интегрированы, очищены, преобразованы, нормализованы и т. д. Такие задачи могут называться по-разному, например: ETL (извлечение, преобразование, загрузка), подготовка, слияние, уплотнение данных и др. Результаты обработки должны храниться и управляться, как и исходные данные. Для этого также используют базы, чтобы результаты можно было легко распределить между частями организации или обеспечить им совместный доступ. Следовательно, специалист по данным должен обладать навыками взаимодействия с базами данных и обработки содержащейся в них информации.

Понятие «компьютерные науки» используется здесь для обозначения целого ряда навыков и инструментов, которые позволяют специалисту работать с большими данными и преобразовывать их в новую значимую информацию. Высокопроизводительные вычисления (HPC) предполагают агрегацию вычислительных мощностей для достижения большей производительности, чем может дать автономный компьютер. Многие проекты имеют дело с очень большими наборами данных и/или алгоритмами машинного обучения, которые требуют дорогостоящих вычислений. В таких ситуациях важно иметь навыки доступа к ресурсам HPC и их использования. Помимо HPC, мы уже упоминали о задачах сбора, очистки и интегрирования веб-данных, стоящих перед специалистом. Сюда же входит умение обрабатывать неструктурированный текст и изображения. Кроме того, неплохо, если специалист по данным способен сам написать приложение для выполнения конкретной задачи или изменить существующее, чтобы настроить его под конкретные данные и сферу деятельности. Наконец, необходима компьютерная грамотность, чтобы понимать и разрабатывать модели машинного обучения и интегрировать их в производственные, аналитические или внутренние приложения организации.

Графическое отображение данных существенно упрощает их просмотр и понимание. Визуализация применяется на всех этапах процесса. Работая с данными в табличной форме, легко пропустить такие вещи, как выбросы, тренды в распределениях или незначительные изменения данных во времени. Правильное графическое отображение выявляет эти и другие аспекты. Визуализация является важной и растущей областью науки о данных, и мы рекомендуем работы Эдварда Туфта{5} и Cтефана Фью{6} как отличное введение в ее принципы и методы.

В процессе обработки данных (от их первоначального сбора и исследования до сравнения результатов различных моделей и типов анализа) используются статистические и вероятностные методы. Машинное обучение применяет их для поиска закономерностей. Специалист по данным не обязан уметь писать алгоритмы машинного обучения, но должен понимать, как и для чего они используются, что означают сгенерированные ими результаты и на каком типе данных могут выполняться конкретные алгоритмы. Иначе говоря, воспринимать их как «серый ящик» — систему с частично известной внутренней структурой. Это позволит сконцентрироваться на прикладных аспектах и провести тестирование различных алгоритмов машинного обучения, чтобы понять, какие из них лучше всего подходят для конкретного сценария.

Наконец, важным аспектом успешности специалиста по данным является умение рассказать с их помощью историю. Это может быть история прозрения, которое дал анализ, или история о моделях, созданных в ходе проекта, которые идеально впишутся в процессы организации и благотворно повлияют на ее функционирование. В потрясающем проекте по обработке данных нет никакого смысла, если его результаты не будут использованы, но для этого надо сообщить о них коллегам, не имеющим технического образования, в такой форме, чтобы они смогли все

Добавить цитату