7 страница из 9
Тема
не только для рендеринга графики, но и для машинного обучения. В последние годы графические процессоры были адаптированы и оптимизированы для использования в машинном обучении, что способствовало заметному ускорению обработки данных и обучения моделей. Также стали доступны удобные инструменты для обработки данных, которые снизили барьеры для доступа к ним. В совокупности это означает, что сбор, хранение и обработка данных никогда еще не были такими простыми.

За последние 10 лет появились более мощные модели машинного обучения, известные как глубокое обучение, которые произвели революцию в компьютерной обработке данных языка и изображений. Термин «глубокое обучение» описывает семейство моделей многослойных нейронных сетей. Нейронные сети существуют с 1940-х гг., но лучше всего они проявили себя с большими сложными наборами данных и мощными вычислительными ресурсами для обучения. Таким образом, появление глубокого обучения в последние несколько лет связано с ростом больших данных и вычислительной мощности. Тем не менее не будет преувеличением сказать, что влияние глубокого обучения на целый ряд областей исключительно. История AlphaGo[9] от DeepMind является отличным примером того, как глубокое обучение произвело революцию в области исследований. Го — настольная игра, созданная в Китае 3000 лет назад. Играть в го проще, чем в шахматы: игроки по очереди размещают фигуры на доске с целью захвата фигур противника или окружения пустой территории. Однако простота правил и тот факт, что в гo используется доска с бо́льшим числом клеточек, означают и большее число возможных конфигураций, нежели в шахматах. Число возможных конфигураций в го больше, чем число атомов во Вселенной, и это делает го гораздо более сложной игрой для компьютера, чем шахматы, в силу огромного пространства для поиска и сложности в оценке всех возможных конфигураций. Команда DeepMind использовала модели глубокого обучения, чтобы AlphaGo смогла оценивать конфигурации на доске и выбирать следующий ход. В результате AlphaGo стала первой компьютерной программой, которая победила профессионального игрока, а в марте 2016 г. она одержала победу над 18-кратным чемпионом мира по го Ли Седолем в матче, который посмотрели более 200 млн человек во всем мире. Еще совсем недавно, в 2009 г., лучшая компьютерная программа для игры в го оценивалась как соответствующая любительскому уровню, а уже спустя семь лет AlphaGo обыграла чемпиона мира. В 2016 г. в самом престижном академическом журнале Nature была опубликована статья, описывающая алгоритмы глубокого обучения, заложенные в AlphaGo{12}.

Глубокое обучение также оказало огромное влияние на ряд публичных потребительских технологий. В настоящее время Facebook использует глубокое обучение для распознавания лиц и анализа текста, чтобы подбирать людям рекламу на основе их онлайн-разговоров. Google и Baidu используют глубокое обучение для распознавания изображений, титрования и поиска, а также для машинного перевода. Виртуальные помощники Apple Siri, Amazon Alexa, Microsoft Cortana и Samsung Bixby используют распознавание речи на основе глубокого обучения. Huawei разрабатывает виртуального помощника для китайского рынка, в котором также будет использоваться система распознавания речи с глубоким обучением. В главе 4 мы более подробно расскажем об этом. Хотя глубокое обучение является важной технической разработкой, возможно, с точки зрения роста науки о данных наиболее интересным его аспектом будет демонстрация возможностей и преимуществ самой науки о данных и привлечение внимания организаций к результатам таких успешных историй.

Разоблачение мифов

Наука о данных дает много преимуществ современным организациям, но вокруг нее крутится и масса слухов, поэтому важно понять, каковы реальные ограничения науки о данных. Одним из самых больших мифов является вера в то, что наука о данных — автономный процесс, который сам найдет решения наших проблем. Но на деле на всех этапах этого процесса требуется квалифицированный человеческий контроль. Люди нужны для того, чтобы сформулировать проблему, спроектировать и подготовить данные, выбрать, какие алгоритмы машинного обучения являются наиболее подходящими, критически интерпретировать результаты анализа и спланировать соответствующие действия, основанные на выявленных закономерностях. Без квалифицированного человеческого надзора проект по обработке данных не сможет достичь своих целей. Лучшие результаты мы видим, когда объединяются человеческий опыт и компьютерная мощь. Как выразились Линофф и Берри: «Глубинный анализ данных позволяет компьютерам делать то, что они умеют лучше всего, — копаться в куче информации. Это, в свою очередь, дает людям делать то, что лучше всего получается у них, — ставить задачу и осмыслять результаты»{13}.

Широкое и все возрастающее использование науки о данных означает, что сегодня самая большая проблема для многих организаций заключается в найме аналитиков. Человеческий фактор в науке о данных имеет первостепенное значение, и ограниченный ресурс специалистов является основным узким местом в распространении самой науки. Чтобы лучше представить масштаб нехватки специалистов, заглянем в отчет McKinsey Global Institute (MGI) за 2011 г.: прогноз дефицита сотрудников с навыками обработки данных и аналитики в Соединенных Штатах в ближайшие годы — от 140 000 до 190 000 человек; еще больший дефицит — 1,5 млн человек — менеджеров, способных понимать науку о данных и аналитические процессы на уровне, который позволяет им надлежащим образом запрашивать и интерпретировать результаты{14}. Спустя пять лет в своем отчете за 2016 г. MGI по-прежнему убежден, что наука о данных имеет огромный неиспользованный потенциал в расширяющемся диапазоне приложений, а дефицит специалистов сохраняется с прогнозируемой нехваткой 250 000 человек в ближайшей перспективе{15}.

Второй большой миф заключается в том, что каждый проект непременно нуждается в больших данных и требует глубокого обучения. Как правило, наличие большого объема данных помогает, но гораздо важнее, чтобы данные были правильными. Подобные проекты часто ведутся в организациях, которые располагают значительно меньшими ресурсами с точки зрения данных и вычислительной мощности, чем Google, Baidu или Microsoft. Примеры проектов небольшого масштаба: прогнозирование требований возмещения ущерба в страховой компании, которая обрабатывает около 100 заявок в месяц; прогноз отсева студентов в университете, где обучаются менее 10 000 человек; ожидания ротации членов профсоюза с несколькими тысячами участников. Эти примеры показывают, что организации не нужно обрабатывать терабайты информации или иметь в своем распоряжении огромные вычислительные ресурсы, чтобы извлечь выгоду из науки о данных.

Третий миф заключается в том, что современное программное обеспечение для обработки данных легко в использовании и, следовательно, сама наука о данных тоже не представляет собой ничего сложного. Программное обеспечение для обработки данных действительно стало более удобным для пользователя. Однако такая простота может скрывать тот факт, что для получения правильных результатов требуются как соответствующие знания предметной области, так и знания в области науки о данных, касающиеся свойств данных и допущений, лежащих в основе глубинного анализа и алгоритмов машинного обучения. На самом деле никогда еще не было так легко стать плохим специалистом по данным. Как и в любой сфере жизни, если вы не понимаете, что делаете, то

Добавить цитату