Вы уже слышали ответ на этот вопрос, ведь в старших классах наверняка изучали фотосинтез. Возможно, вы видели эту химическую реакцию:
Если вам больше нравятся схемы, то:
(Кстати, если вы когда-либо гуглили какое-то химическое вещество, то вы, возможно, видели подобные структуры. Это химическая стенография. Каждая буква соответствует атому. С = углерод, Н = водород. Линии отражают химические связи: в данном случае электроны, распределенные между атомами. Везде, где пересекаются две или более линии, присутствует атом углерода. Он не нарисован, но он там есть. Почему химики не изображают каждый подобный атом? В случае больших молекул это заняло бы целую вечность.)
Вот объяснение, которое вы слышали в школе:
Растения используют солнечную энергию, чтобы преобразовать шесть молекул углекислого газа и шесть молекул воды в молекулу глюкозы и шесть молекул кислорода.
Я заснул так быстро, что ударился лбом о стол и снова проснулся. Но мы все же попробуем разобраться.
Растения используют солнечную энергию…
Люди изобрели солнечные батареи только в 1950-х годах, а растения сделали это 500 миллионов лет назад. Дело в том, что листья[24] работают как маленькие солнечные батареи. Растения нашли способ конструировать крошечные молекулярные аппараты, которые меняют их форму и поведение в ответ на всего один протон света, а также направляют энергию на производство глюкозы.
Итак, далее: …преобразовать шесть молекул углекислого газа…
С нашей точки зрения, в атмосфере слишком много углекислого газа (привет, климатические изменения!), но растениям кажется, что его слишком мало. На уровне моря воздух состоит из углекислого газа примерно на 0,04 %. Это значит, что если бы вы случайным образом взяли десять тысяч молекул воздуха, то всего четыре из них оказались бы молекулами углекислого газа, а 9,996 не были бы… им и не представляли бы никакой ценности для фотосинтеза. Получается, растения каким-то образом научились выискивать всего четыре необходимые молекулы из десяти тысяч.
Мы продолжаем: …и шесть молекул воды…
Нам нужна лишь сладкая-пресладкая вода.
Двигаемся дальше: …в молекулу глюкозы…
Глюкоза, которую производят растения, используется ими разными способами: она сжигается ради получения энергии точно так же, как это происходит у людей; превращается в сахарозу (это то же самое, что сахар в вашем кухонном шкафчике); трансформируется в крахмал и запасается на зиму[25]; превращается в целлюлозу и используется для построения растения… Этот список можно продолжать. В некотором смысле глюкоза – это многофункциональный швейцарский нож в растительном мире.
Последнее, но не менее важное: …и шесть молекул кислорода.
На каждую молекулу глюкозы, произведенную растением, формируется шесть молекул кислорода. Затем растение выбрасывает их в атмосферу, где на каждые 10 тысяч молекул и так приходится 2096 молекул кислорода. Немного уходит на то, чтобы получить энергию из глюкозы, но основная часть оказывается в атмосфере. Кислород в буквальном смысле является выхлопным газом фотосинтеза.
Люди изобрели солнечные батареи только в 1950-х годах, а растения сделали это 500 миллионов лет назад.
Растения используют солнечную энергию и воду, чтобы разбивать молекулы диоксида углерода и связывать атомы углерода вместе, благодаря чему образуются химически стабильные водорастворимые кольцеобразные молекулы хранения энергии. Вы знаете их как глюкозу. Она может сгорать ради получения энергии сразу же, применяясь в качестве строительного материала, или связываться в цепи из тысяч элементов, чтобы использоваться позднее.
Глюкоза производится в листьях, но, поскольку она очень важна, другие части растения тоже в ней нуждаются. Таким образом, ей необходимо переместиться из листьев в другие составляющие растения. В случае специй в горшочках у вас на кухне протяженность пути, который она должна преодолеть, составляет всего несколько сантиметров, но у самых высоких деревьев этот маршрут может достигать нескольких десятков метров. Так как же глюкоза попадает из одного конца растения в другой?
* * *Прежде чем разобраться с вопросом «как», нам нужно поговорить о том, сколько глюкозы попадает из одного конца растения в другой. Если отвечать просто, то много. Дуб производит 25 килограммов этого вещества каждый день. Это вес семилетнего ребенка или золотистого ретривера женского пола. Значительная часть глюкозы транспортируется в цветки, плоды, ствол, ветви и корни.
У людей весьма интересная циркуляторная система. У нас есть один мощный насос (сердце), который толкает густую жидкость, наполненную живыми клетками (кровь), по большим и средним артериям и крошечным капиллярам. У растений этого нет, однако даже самое высокое дерево в мире, Гиперион в Калифорнии[26], умудряется перемещать глюкозу от листа, расположенного на высоте 116 метров, до самого глубокого корня, который может находиться в 30 метрах от ствола. Как это возможно? Благодаря флоэме. Вероятно, в школе вам рассказывали о ней:
Ксилема транспортирует воду из корней к остальным частям растения, а флоэма перемещает глюкозу из листьев в другие места.
Флоэма – это сложная ткань, и ее ключевые компоненты называются ситовидными трубками. Они напоминают водопровод, однако сделаны не из меди, как трубы на красивых фото ванных комнат на Pinterest[27], а из живых клеток. Одиночных живых клеток, прилегающих друг к другу, словно участки нефтепровода. Места их стыков имеют отверстия, как сито в кухонной раковине. Длина каждой секции, называемой ситовидным элементом, равна всего нескольким сотням миллионных долей метра. Ширина ситовидных элементов в листьях составляет около десяти миллионных долей метра[28]. Представьте, какой должна быть сила всасывания (или выдувания), необходимая, чтобы проталкивать сахарный раствор через соломинку шириной всего 10 миллионных долей метра и длиной десятки метров. Тем не менее растения делают это ежедневно. Как?
Благодаря фотосинтезу. В отличие от меня и вас, фотосинтез невероятно продуктивен. При оптимальных условиях некоторые растения могут вырабатывать молекулу глюкозы, используя всего 60 фотонов света (для сравнения: около 300 000 000 000 000 фотонов попадают в ваши глаза каждую секунду, когда вы смотрите на синее небо в солнечный день). Даже при умеренно благоприятных условиях растение может произвести около 800 миллиграммов глюкозы на лист среднего размера в день. Она постоянно поступает в ситовидные трубки в листьях, и, как вам известно, чем больше вы пытаетесь впихнуть в ограниченное пространство, тем выше давление внутри него. К счастью, глюкозе есть куда переместиться, чтобы снизить давление: в остальные части растения. Однако на самом деле оно никогда по-настоящему не падает, потому что фотосинтез продолжает происходить в листьях, где производится все больше глюкозы, которая поступает в ситовидные трубки и распространяется по другим частям растения[29].
Вы можете представить себе фотосинтез в виде насоса, но не механического, который работает благодаря компрессии, а химического, который производит все больше и больше глюкозы до тех пор, пока не появляется необходимость переместить ее куда-то.
Но не позволяйте тому факту, что этот насос немеханический, ввести вас в заблуждение.