4 страница из 10
Тема
идем по последовательности простых чисел, тем обширнее становятся промежутки между ними. Если посмотреть на перечень выше, можно увидеть, что два числа отстоят друг от друга максимум на 6 единиц (например, 53 и 59). Но простые числа 89 и 97 отстоят друг от друга на 8 единиц, все целые числа между ними составные. Или вот другой пример: 139 и 149 – их отделяет 10 единиц. Чем дальше мы двигаемся, тем быстрее увеличиваются промежутки между соседними простыми числами. Можно предположить, что в конечном итоге простые числа должны совсем исчезнуть. На самом деле, хотя они и встречаются все реже, их список в числовом ряду не имеет конца. Впрочем, прежде чем говорить об этом уверенно, мы должны привести доказательство.

Ключевая идея – задаться вопросом: а что, если?..

А что, если количество простых чисел конечно? Если мы продемонстрируем, что предположение: «Количество простых чисел конечно» – приводит к абсурдному выводу, то будем считать его ложным[21]. Вслед за Шерлоком Холмсом мы найдем истину, отбросив невозможные варианты, и у нас получится, что простых чисел бесконечно много.

Вот что нам надо будет сделать:

1. Предположить, что количество простых чисел конечно;

2. Показать, что это предположение ведет к невозможному выводу;

3. Сделать умозаключение, что, раз предположение ведет к логическому противоречию, оно ложно;

4. Вывести из этого, что простых чисел бесконечно много.

А теперь перейдем к делу. Предположим, что простые числа можно пересчитать, и посмотрим, к чему это приведет.

Если количество простых чисел конечно, должно существовать наибольшее простое число P – крайнее в ряду простых чисел. В таком случае полный перечень простых чисел будет выглядеть так:

2, 3, 5, 7, 11, 13, …, P.

Перемножим все эти числа и приплюсуем единицу. Назовем получившееся гигантское число N:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Число N – простое[22]? Наше предположение заставляет нас ответить: нет, потому что N больше P, последнего простого числа. Значит, N – составное число, и его можно разложить на множители. Здесь мы попадаем в западню.

Мы знаем, что у N есть простые делители. Может ли таким делителем быть 2? Мы утверждаем: нет. Посмотрите на формулу для вычисления N и обратите внимание, что число в скобках четное, потому что среди множителей присутствует 2:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского четного числа. Другими словами, N – нечетное, следовательно, оно не делится на 2.

Ну и ладно. Мы же знаем, что у N есть простой делитель, так что нет ничего страшного в том, что 2 не подходит. Как насчет 3? Посмотрим снова на число в скобках и обнаружим, что среди множителей есть 3:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Таким образом, N на единицу больше некоторого гигантского числа, делящегося на 3. Это означает, что при вычислении частного N / 3 мы получим остаток 1. Следовательно, N не делится на 3.

Видите, куда мы движемся? Возьмем очередное простое число, 5. Мы утверждаем, что N не делится на 5, потому что оно на единицу больше числа, без остатка делящегося на 5:

N = (2 × 3 × 5 × 7 × 11 × 13 × … × P) + 1.

Точно так же мы доказываем, что N не делится ни на 7, ни на 11, ни на 13 и ни на какое угодно другое простое число!

К чему мы пришли? Наше предположение о том, что количество простых чисел конечно, привело нас к двум выводам:

– N делится на некое простое число;

– N не делится ни на какое простое число.

Но это же абсурдно! Из ловушки можно выбраться, только если признать, что предположение о конечном количестве простых чисел было ложным. Таким образом, получается, что простых чисел бесконечно много.

Конструктивный подход

Представленное нами доказательство относится к разряду доказательств от противного. Мы предположили, что утверждение, обратное тому, которое мы хотим доказать, верно, затем продемонстрировали, что это приводит к безвыходной ситуации, после чего сделали умозаключение, что наше предположение ложно, а утверждение, требующее доказательства, истинно. Путеводная путаница, софистика-эквилибристика!

Есть и другой способ доказательства: создать некий механизм по производству простых чисел. Мы засыпаем в него пригоршню простых чисел и – вуаля! – оттуда высыпаются новые простые числа. Вот как работает эта машина.

Зачерпнем полдюжины простых чисел: 2, 3, 5, 7, 11 и 13. Перемножим их и приплюсуем единицу:

(2 × 3 × 5 × 7 × 11 × 13) + 1 = 30 031.

Ясно, что 30 031 не делится на 2, – это легко заметить, потому что последняя цифра нечетная. На 3 оно тоже не делится (потому что на единицу больше, чем 2 × 3 × 5 × 7 × 11 × 13, которое делится на 3). Точно так же оно не делится на 5, 7, 11 и 13. Стало быть, или это число само простое, или его можно разложить на простые множители, не входящие в наш перечень. Кости выпали так, что число 30 031 – составное. Оно раскладывается на простые множители следующим образом: 59 × 509. Этих чисел не было в нашем перечне.

Возьмем их и предыдущие полудюжины чисел и построим новое число:

(2 × 3 × 5 × 7 × 11 × 13 × 59 × 509) + 1,

что равно 901 830 931. Кости выпали так, что число оказалось простым[23].

Мы можем добавить его в наш перечень и наштамповать так еще много чисел – либо простых, либо разложимых на простые множители. Эта операция позволяет бесконечно получать все новые и новые простые числа.

Другое доказательство

Это не единственное доказательства того, что простых чисел бесконечно много. Вот вам еще одно.

Как и в первом доказательстве, предположим, что количество простых чисел конечно, и покажем, что это предположение ведет к противоречию. Представим, что самое большое простое число равно P, и составим перечень простых чисел:

2, 3, 5, 7, 11, 13, …, P.

Пусть N – результат перемножения всех этих чисел:

N = 2 × 3 × 5 × 7 × 11 × 13 × … × P.

Теперь давайте подумаем обо всех числах от 1 до N включительно. Каждое из них (за исключением 1) делится на одно или несколько простых чисел; иными словами, любое число (кроме 1) делится на какое-то простое число.

Сколько чисел от 1 до N делится на 2? Очевидно, что половина (четные числа). Вычеркнем их и оставим лишь нечетные:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

Добавить цитату