5 страница из 8
Тема
не непрерывным распределением, предсказываемым классической физикой. Сперва де Бройль предположил, что такое описание было всего лишь математической абстракцией, но корпускулярно-волновой дуализм кажется слишком реалистичным. Классический эксперимент Юнга по интерференции волн также был воспроизведен с электронами и частицами других типов (см. рис. 2.1).


Рис. 2.1. Обновленные варианты классического опыта Юнга с двумя щелями показывают, что частицы похожи на волны еще и в зависимости от того, как их детектировать.


Эйнштейн против Бора

Одним из наиболее известных противостояний в науке была вражда между Альбертом Эйнштейном и Нильсом Бором (см. рис. 2.2). С конца 20-х до начала 30-х годов XX века эти ученые боролись за будущее физики. Эйнштейн не мог принять вопиющую случайность и непознаваемость квантовой механики и потому пытался опровергнуть ее, разработав набор оригинальных мысленных экспериментов. Но как только Эйнштейн, по его мнению, приближался к обнаружению противоречий, лежащих в основе квантовой теории, Бор доказывал, что он ошибается. Несмотря на все свои спорные составляющие, квантовая механика одержала победу.

Рис. 2.2. Датский физик Нильс Бор.


Запутанность

Согласно идее квантовой запутанности, частицы могут быть связаны таким образом, что изменение квантового состояния одной частицы мгновенно повлияет на другую, даже если их разделяют световые годы. Это «жуткое действие на расстоянии», как говорил Эйнштейн, – серьезный удар по цельности нашего понимания того, как устроен мир. Эрвин Шрёдингер (см. рис. 2.3) назвал это «определяющей особенностью» квантовой теории. Эйнштейн не мог решиться поверить во все это, считая доказанным наличие у квантовой теории серьезных недостатков.


Рис. 2.3. Эрвин Шрёдингер.


Суперпозиция

Как бы вы ни старались, вы не сможете находиться в двух местах одновременно. Но если вы – электрон, то появление сразу в нескольких местах – это ваш образ жизни. Законы квантовой механики говорят нам, что субатомные частицы существуют в суперпозиции состояний, пока не будут измерены и обнаружены в одном определенном – когда волновая функция коллапсирует.

Так почему бы нам не проделать коронный номер электрона? Кажется, что, как только объект становится достаточно большим, он теряет свои квантовые свойства – этот процесс известен как декогеренция (см. главу 7). В основном это связано с тем, что более крупные объекты взаимодействуют с окружением, заставляющим занять то или иное положение. Эрвин Шрёдингер отлично продемонстрировал абсурдность суперпозиции на больших масштабах с помощью эксперимента с котом, который и жив, и мертв одновременно и чья судьба зависит от распада радиоактивного атома – случайного квантового процесса.

Волновое уравнение Шрёдингера

В 1926 году Эрвин Шрёдингер выдвинул идею о том, что все квантовые частицы – от атомов до электронов – можно описать неосязаемыми сущностями, распространяющимися в пространстве подобно ряби на поверхности озера. Он назвал их волновыми функциями, которые четко объяснили, почему у электронов в атомах именно такие значения энергии, а не какие-то другие.

Все волны можно описать математически. Например, распространяющаяся по пруду рябь – это возмущение на воде; ее волновая функция описывает форму ряби в любой точке и в любой момент времени, тогда как нечто, называемое волновым уравнением, предсказывает движение ряби. Из труда де Бройля Шрёдингер понял, что у каждой квантовой системы есть связанная с ней волновая функция, хотя он затруднялся объяснить, что является возмущением в случае атома или электрона. Несмотря на это, работа Шрёдингера привела к радикально новой картине квантового мира как места, где определенности уступают дорогу вероятностям.

Волновая функция Шрёдингера является в этой картине центральным элементом, поскольку в ней закодированы все возможные варианты поведения квантовой системы. Изобразим простой случай атома, летящего в пространстве. Это квантовая частица, так что вы не можете сказать с уверенностью, куда он полетит. Если же вам известна его волновая функция, то с ее помощью можно просчитать вероятность нахождения атома в любом месте, каком вы пожелаете.

Квантование

Макс Планк в 1900 году впервые показал, что с математической точки зрения энергия испускается излучающим телом не непрерывно, а неделимыми порциями. Пять лет спустя Эйнштейн продемонстрировал, что свет состоит из дискретных квантов, подобных частицам, которые он назвал фотонами. И это было только начало. По мере того, как квантовая теория развивалась, становилось ясно, что не только энергия, но и многие другие свойства, например электрический заряд и спин, появляются в единицах минимального размера. Но никто не знает, почему так происходит.

Вероятность

Вероятности в классической и в квантовой физике – это совершенно разные вещи. В классической физике они представляют собой «субъективные» величины, которые меняются вместе с нашими знаниями. Вероятность того, что, например, подбрасывание монеты приведет к выпадению орла или решки, скачком меняется от 1/2 к 1, когда мы наблюдаем исход. Если бы было существо, знающее положения и импульсы всех частиц, – названное «демоном Лапласа» в честь французского математика Пьер-Симона Лапласа (1749–1827), первым смирившегося с вероятностью, – оно определило бы развитие всех последующих событий в классической Вселенной и для их описания ему бы не понадобилась вероятность.

В квантовой физике, однако, вероятность появляется из подлинной неопределенности относительно устройства мира. Состояния физических систем в квантовой теории представлены в каталогах информации, как назвал их Шрёдингер, но добавление в них информации на одной странице размывает или стирает ее вовсе на другой. Более точные данные о положении частицы делают менее точными данные о том, как, например, она движется. Квантовые вероятности «объективны» в том смысле, что они не могут быть полностью устранены получением большего количества информации.

Спин

Спин – это понятие, ускользающее от понимания. Данное квантовое свойство многих видов частиц, включая электроны, было впервые предложено в начале 20-х годов XX века австрийским физиком-теоретиком Вольфгангом Паули. Его сила воли была такова, что порождала слухи, будто он заставил опыты окончиться неудачей, просто оказавшись рядом с местом их проведения. Со спином это не понадобилось. Свойство спина становится заметным при наблюдении потока электронов, проходящих сквозь неоднородное магнитное поле. Частицы отклоняются в противоположных направлениях, казалось бы, случайным образом и так, будто у каждой из них есть свое внутреннее вращение, которое каким-то образом «улавливается» магнитным полем, благодаря чему и происходит отклонение от курса.

Неопределенность

Загадкой, над решением которой Бор и его студент Гейзенберг ломали головы зимой 1926–1927 годов, были следы из капелек, оставляемые электронами при прохождении через пузырьковую камеру – прибор, используемый для слежения за движением заряженных частиц. Попытка Гейзенберга рассчитать эти на первый взгляд четкие траектории с помощью уравнений квантовой механики оказалась неудачной.

Как-то вечером в середине февраля Гейзенберг вышел на прогулку и к нему пришло озарение. Трек электрона был совершенно нечетким: при более близком рассмотрении становилось видно, что он состоял из набора размытых точек. Это выявило нечто фундаментальное в квантовой механике. Гейзенберг увлеченно изложил свою идею в письме

Добавить цитату