4. Как вы думаете, у кого в целом больше необъективности — у алгоритмов или у людей?
5. Кого вы считаете более убедительным — лис или ежей?
6. Ваша организация обычно выполняет небольшое количество долгосрочных важных проектов или большое количество краткосрочных?
Глава 3. Наши почти разумные машины
Я верю, что к концу столетия словоупотребление и общественное мнение среди образованных людей изменятся настолько, что разговоры о мыслящих машинах не вызовут протеста.
Алан Тьюринг[166], 1950 г.
* * *
Едва разработав цифровые компьютеры, мы стали пытаться заставить их думать так, как это делаем мы. С самого начала было очевидно, что они очень полезны для выполнения шаблонных математических вычислений, но это не казалось новостью. В конце концов, люди давно знакомы с устройствами, облегчающими счет, начиная с японских и вавилонских абаков и загадочного греческого антикитерского механизма[167], появившихся еще до нашей эры. А вот новой была возможность программировать компьютеры, то есть давать им абсолютно произвольные инструкции[168]. Как мы видели в предыдущей главе, компьютерные программы идеально подходят для алгоритмов — точных пошаговых инструкций для выполнения какой-либо задачи. Однако выдающиеся мыслители, представители самых разных дисциплин, вскоре стали пытаться заставить новые машины делать нечто большее, чем просто выполнять последовательность шагов в заранее установленном порядке. Эти первопроходцы хотели, чтобы запрограммированное «железо» стало умнее их самих — иначе говоря, чтобы машина научилась рассуждать на одном уровне с человеком и стала, таким образом, искусственным интеллектом.
Две разные дороги к искусственному интеллекту
Джон Маккарти, профессор математики в Дартмутском колледже, определял искусственный интеллект как «научные и технические методы создания разумных машин»[169], [170]. Он организовал первую конференцию по этой теме, которая состоялась в колледже в 1956 году. Всего несколько лет спустя вокруг искусственного интеллекта началась масштабная и длительная полемика. Чтобы понять ее суть, а также осознать важность этого обсуждения, давайте рассмотрим различие между тем, как ребенок изучает первый язык, и тем, как большинство взрослых изучает второй язык.
Дети в основном делают это на слух. Они воспринимают разговоры окружающих людей, усваивают некоторые слова и правила, образующие язык, и в какой-то момент начинают говорить сами. У них есть обратная связь: если они делают ошибки, их поправляют, и в итоге дети преуспевают в сложной работе — умении говорить.
Взрослые при изучении нового языка знают, насколько это трудно. Когда они задаются целью овладеть вторым языком, то немедленно сталкиваются с множеством правил: куда поставить местоимения в предложении; какой предлог использовать; как спрягать глаголы; есть ли род у существительных, и если да, каким он бывает; как различать субъект и объект (чтобы понимать, кто является действующим лицом во фразах типа «мать видит дочь») и так далее. Запоминать слова очень трудно, но большинство взрослых людей, изучающих язык, больше страдают от необходимости изучать массу сложных и иногда непоследовательных правил.
Детям не нужны уроки по правилам языка, чтобы научиться хорошо говорить. А вот большинство взрослых не может без них обойтись. Разумеется, эти подходы отчасти перекрываются — многие дети изучают родную речь в школе, а взрослые воспринимают некоторые вещи на слух, — но разница все равно существенна. Мозг ребенка специализируется на изучении языка, и работа происходит по статистическим принципам выделения языковых закономерностей[171]. Например, когда мама говорит о себе как о субъекте, она использует слово «я» и ставит его в начало предложения. Когда она является объектом, она использует слово «меня» и ставит его не в начало. Поскольку мозг взрослых отличается, им приходится изучать правила в явном виде.
На ранних стадиях работы над искусственным интеллектом занимавшееся им сообщество разделилось на два лагеря. Одни сосредоточились на так называемом символическом, или основанном на правилах, искусственном интеллекте, в то время как другие строили системы статистического распознавания образов. Первые пытались разработать искусственный интеллект на тех принципах, посредством которых взрослые люди учат иностранный язык; вторые стремились сделать искусственный интеллект похожим на ребенка, осваивающего речь.
Поначалу казалось, что более успешен символический подход. Например, на Дартмутском семинаре 1956 года Аллен Ньюэлл, Джон Клиффорд Шоу и будущий нобелевский лауреат Герберт Саймон продемонстрировали свою программу Logic Theorist, которая использовала правила формальной логики для автоматического доказательства математических теорем. Она смогла доказать 38 теорем из второй части Principia Mathematica — фундаментального труда Альфреда Уайтхеда и Бертрана Рассела по логике и философии математики. Одно из доказательств программы настолько превосходило по изяществу приведенный в книге аналог, что сам Рассел отреагировал на него «с восторгом»[172]. Саймон объявил, что они с коллегами «изобрели мыслящую машину»[173]. Тем не менее оказалось, что другие задачи намного хуже решаются с помощью подхода, основанного на правилах. Десятилетия исследований в области распознавания речи, классификации изображений, перевода с одного языка на другой и прочих дали весьма неубедительные результаты. Самые лучшие из систем, работающих в этих областях, справляются со своими задачами намного хуже человека, а худшие просто чудовищны. Например, если верить сборнику баек 1979 года, исследователи предлагали для перевода с английского языка на русский фразу «The spirit is willing, but the flesh is weak»[174], [175]. Программа выдала «Виски приемлемо, но мясо испортилось». Вполне вероятно, что это вымышленная история[176], но даже если и так, она вполне правдоподобна. Символические системы искусственного интеллекта, рассматриваемые как единая группа, генерировали весьма заурядные результаты, так что к концу 1980-х в этой области наступила «зима», поскольку иссякли корпоративные и государственные источники финансирования.
СЛИШКОМ МНОГО ПРАВИЛЧто объясняет такой масштабный провал символических подходов к искусственному интеллекту? Есть два основных препятствия. Одно представляет серьезную проблему для этой области, а второе выглядит вообще непреодолимым. Прежде всего, в мире есть масса правил — как прекрасно знают взрослые, изучающие язык, — и в целом недостаточно знать и соблюдать большинство из них. Чтобы грамотно говорить, вам нужно освоить все правила. Даже если предложение грамматически правильно на 80 процентов, оно, скорее всего, будет звучать комично или даже покажется бессмысленным.
Внутри правил есть свои правила. Так, недостаточно знать, что в английском языке прилагательное обычно ставится перед существительным. В своей книге The Elements of Eloquence («Элементы красноречия»)[177] Марк Форсайт пишет: «Прилагательные в английском языке должны следовать строго в таком порядке: мнение — размер — возраст — форма — цвет — происхождение — материал — предназначение, а далее идет существительное. У вас может быть любимый маленький старый прямоугольный зеленый французский серебряный перочинный ножик. Но если вы хоть чуть-чуть перепутаете порядок слов, вас посчитают безумцем. Странная штука: любой человек, говорящий на английском языке, строго придерживается этого правила, но почти никто не может его сформулировать»[178].
Кроме того, миры, в которых мы живем — и мир физических объектов,