Технологические гиганты, включая Microsoft, Amazon, Google и IBM, разработали собственные технологии машинного обучения и сделали их доступными для других компаний[204] посредством сочетания облака и программных интерфейсов приложений (API), которые, по сути, являются ясными, согласованными и открытыми правилами, определяющими то, как части программного обеспечения взаимодействуют друг с другом. API значительно облегчают комбинирование кода из различных источников в единое приложение, а облако обеспечивает его доступность по запросу в любой точке мира.
С такой инфраструктурой появляется возможность быстрого распространения машинного обучения по всему миру. Однако по причинам, описанным в главе 1, мы предполагаем, что это будет происходить неравномерно, поскольку в ведущих компаниях перестраиваются процессы и возникают новые модели ведения бизнеса. Это уже произошло кое-где, в том числе в некоторых неожиданных местах.
Когда японец Макото Коикэ в 2015 году приехал к родителям на огуречную ферму, он увидел возможность применить машинное обучение. Ранее он работал инженером по аппаратному и программному обеспечению в автомобильной промышленности, поэтому был сведущ в создании оборудования, сочетающего коды и механизмы. Он нашел приложение своим талантам, взявшись за сортировку огурцов, которой ранее занималась его мать. Используя свой многолетний опыт, она вручную сортировала всю продукцию фермы на девять категорий[205]. Работа не казалась сложной, поскольку ферма была небольшая (средний размер японской фермы, за исключением тех, где выращивают рис, составляет всего 1,5 гектара[206], то есть примерно полтора бейсбольных или два футбольных поля[207]), но мать сильно уставала. Во время пика созревания она работала до восьми часов в день.
Макото Коикэ был впечатлен[208] способностями AlphaGo к сравнению изображений и заинтересовался технологией машинного обучения TensorFlow, которую Google открыла для широкой общественности в ноябре 2016 года. Инженер решил использовать TensorFlow, чтобы узнать, можно ли автоматизировать работу по сортировке огурцов на семейной ферме. Хотя у него не было опыта в области машинного обучения, он освоил TensorFlow, а затем обучил систему, взяв 7 тысяч изображений огурцов различных категорий. Используя недорогие камеры, компьютеры и контроллеры, Макото построил полностью автоматический сортировщик, который в первый год работы добился 70-процентной точности. Улучшить результат почти наверняка можно будет с помощью изображений более высокого разрешения и нового поколения программного обеспечения для машинного обучения, использующего облако. Макото говорит об этих технологиях так: «Мне не терпится их опробовать»[209]. Работы, подобные описанной, заставляют нас согласиться с мнением Каза Сато из Google, заметившего: «Я не преувеличу, если скажу, что варианты применения машинного обучения и глубокого обучения ограничены только нашим воображением»[210].
Когда мы писали книгу, почти все коммерчески успешные системы в этой сфере использовали методы контролируемого обучения и лишь немногие применяли неконтролируемое обучение (как в случае с оптимизацией дата-центра компанией DataMind). Однако люди в основном учатся с помощью неконтролируемого обучения. Ребенок каждый день изучает физику, играя с кубиками, выливая воду из стакана, бросая мячик и опрокидывая стулья, а не изучая законы Ньютона и не запоминая уравнения типа F = ma. Ян Лекун метко обрисовал широту и почти полную невостребованность неконтролируемого обучения с помощью такой метафоры: «Если сравнивать машинное обучение с кексом, то неконтролируемое обучение будет собственно кексом, контролируемое — сахарной глазурью, а обучение с подкреплением — вишенкой наверху. Мы знаем, как делать сахарную глазурь и где взять вишенку, но мы пока не в силах испечь кекс»[211]. Он считает, что разработка улучшенных алгоритмов неконтролируемого обучения станет важна, если мы когда-нибудь создадим общий искусственный интеллект.
РАЗУМ И МАШИННОЕ ОБУЧЕНИЕМы не раз слышали, как создатели нынешнего поколения нейронных сетей пренебрежительно именуют предыдущий, основанный на правилах подход «конструированием признаков». Сейчас многие специалисты считают неверным подход, при котором сначала все соответствующие ситуации правила собираются, а затем вводятся в компьютер. Они полагают, что гораздо продуктивнее создавать системы, способные изучать правила самостоятельно. Статистический лагерь исследователей искусственного интеллекта сейчас занимает лидирующие позиции и уже выполнил по меньшей мере некоторые обещания из тех, что были даны более полувека назад.
И как же в таких условиях свести вместе разум и машину? Есть несколько разных способов. Один был описан в предыдущей главе; его сторонники, Пол Мил и Том Дэвенпорт, полагают, что люди, наделенные здравым смыслом, будут наблюдать за решениями и действиями искусственного интеллекта и вмешиваться, если заметят что-то неладное. Именно это делала компания DeepMind, когда оптимизировала обслуживание дата-центра с помощью нейронных сетей. Люди-контролеры никуда не делись, в любой момент они могли перехватить контроль у компьютера.
Автопроизводители, которые встраивают в машины технологии автоматического управления, пользуются таким же методом. Они подчеркивают, что человек и в буквальном, и в переносном смысле находится на месте водителя и отвечает за безопасное функционирование автомобиля даже в то время, когда тот едет сам. Многим участие человека в схеме управления кажется благоразумным, поскольку невнимательность может быть фатальной. Летом 2016 года машина марки Tesla Джошуа Брауна врезалась в борт грузового прицепа, водитель погиб[212]. Фура белого цвета совершала левый поворот с автострады на боковую дорогу. Браун ехал по противоположной стороне шоссе. Поскольку машина Tesla не затормозила перед катастрофой, похоже, ни Браун, ни видеокамера автомобиля не заметили белый прицеп на фоне яркого неба Флориды[213]. Возможно, Браун слишком полагался на систему автоматического вождения, так как видел ее эффективность во многих предыдущих случаях и привык не обращать особого внимания на дорогу.
Google считает, что, поскольку человеческая невнимательность — это вечная проблема, нужно полностью исключить людей из управления транспортным средством. Крис Урмсон, бывший руководитель проекта компании по машинам с автоматическим управлением, говорит: «Общепринятая точка зрения такова, что нам нужно взять существующие системы помощи водителю и каким-то образом постоянно улучшать их, тогда у нас со временем появятся самоуправляемые автомобили. Что ж, я отвечу так: это равнозначно утверждению, что если я буду усердно учиться прыгать, то когда-нибудь научусь летать. На самом деле действовать нужно несколько иначе»[214]. Вот почему компания работает над созданием на сто процентов автономных машин, которые не требуют участия человека, — это называется автономностью пятого уровня[215].
Их возможности впечатляют. На конференции TED[216] 2015 года Урмсон сообщил: «Наши автомобили проезжали через Маунтин-Вью, и вот с чем мы столкнулись. Одна женщина на электрическом кресле-коляске гонялась кругами за уткой. В правилах дорожного движения ничего не написано о том, что нужно делать в таком случае, однако наши машины смогли обнаружить препятствие, снизить скорость и проехать дальше»[217]. Автономных машин, способных безопасно ездить в любых условиях и ситуациях, пока еще нет. Тем не менее, по нашему мнению, они скоро появятся.
Способность машин преодолевать парадокс Полани начинает