20 страница из 21
Тема
применяться в работе бэк-офисных подразделений «белых воротничков», которая в данный момент удивительно плохо поддается полной автоматизации. «Бэк-офис» — обобщающий термин для умственной работы, происходящей вне поля зрения клиента и включающей закупки, бухгалтерию и IT. Как мы говорили ранее, наиболее масштабные и распространенные операции бэк-офиса давно автоматизированы корпоративными системами, тем не менее в большинстве компаний все равно остается масса ручной работы. Один из способов автоматизировать хотя бы часть такой работы — спросить выполняющих ее людей, какими правилами они руководствуются, каковы исключения из них, когда нужно использовать другой набор правил или директив и прочее. Однако на сбор такой информации с помощью опросов ушло бы много времени, и это отвлекло бы сотрудников от работы и, вероятно, не оправдало бы себя. Лица, выполняющие менее рутинную работу, по всей вероятности, не способны точно и исчерпывающе изложить кому бы то ни было, как они действуют.

Японская страховая компания Fukoku Mutual Life использует другой подход[218]. В декабре 2016 года она объявила о попытке использовать созданную IBM технологию искусственного интеллекта Watson, чтобы хоть частично автоматизировать работу людей, имеющих дело с заявлениями о наступлении медицинского страхового случая. Система будет извлекать соответствующую информацию из документов, предоставленных больницами и другими медицинскими учреждениями, и использовать ее для заполнения надлежащих кодов для страховых выплат, а затем выдаст эту информацию людям. В перспективе же система будет «изучать историю оценивания прошлых выплат, чтобы перенять опыт и квалификацию оценщиков»[219]. Другими словами, технологии предстоит обучаться по ходу дела, и со временем она сможет освободить людей от большого объема работы.

Мы ожидаем, что в ближайшее время появится немало таких проектов, и прогнозируем быстрое распространение глубокого и других видов машинного обучения. Например, значительная часть работы с клиентами заключается в том, что сотрудник выслушивает заказчика, чтобы понять, чего тот желает, а затем предоставляет ему ответ или услугу. Современные технологии смогут взять на себя вторую часть описанной процедуры, как только овладеют правилами взаимодействия. Гораздо труднее будет автоматизировать не нахождение ответа, а первый этап — выслушать и понять. Распознавание речи и другие аспекты обработки естественного языка крайне сложны для искусственного интеллекта с самого его зарождения по причинам, описанным в этой главе. Доминировавший ранее символический подход с такими задачами не позволял справиться вовсе, однако ему на смену пришли новые подходы, основанные на глубоком обучении, которые развиваются очень быстро даже на удивление экспертов.

В октябре 2016 года группа из Microsoft Research объявила, что сконструированная ею нейронная сеть достигла «уровня распознавания разговорной речи, сравнимого с человеческим»[220]. Такая фраза была в названии их статьи. Их система работала точнее, чем профессиональные люди-транскрибаторы[221], причем справлялась как с аудиозаписями по установленным темам, так и с обычными разговорами между друзьями и членами семьи. Комментируя этот результат, профессор Джеффри Паллум написал: «Должен признаться, я никогда не думал, что доживу до такого дня. В 1980-х я считал, что полностью автоматическое распознавание связной речи (слушание и точная запись сказанного) слишком трудно для машин… Специалисты достигли этого, не опираясь на какой-либо синтаксический анализ[222]: они проделали чисто техническую работу с помощью статистического моделирования, основанного на гигантском объеме исходных данных… Я не только не думал, что когда-либо это увижу, — я уверенно поставил бы на обратное»[223].

Легендарный ученый Фредерик Йелинек, работавший в области информатики, точно подметил причину масштабного сдвига внутри сообщества разработчиков искусственного интеллекта от подхода, основанного на правилах, к статистическому подходу. В середине 1980-х он сказал: «Каждый раз, когда я увольняю лингвиста, качество распознавания речи улучшается»[224]. К середине 2010-х в самых успешных группах, работавших над задачами преобразования речи в текст, лингвистов не было, и результаты удивили мир. Мы уверены, что нас еще ждут новые сюрпризы.

Мы согласны с CEO[225] компании Salesforce и пионером индустрии высоких технологий Марком Бениоффом в том, что мы двигаемся к «миру с лидерством искусственного интеллекта»[226]. Как и мы, он видит бесчисленные возможности в перспективе заменить людей, принимающих решения, чем-то намного более эффективным. Марк Бениофф пишет: «Многие бизнесы по-прежнему принимают важные решения, опираясь на интуицию, а не на информацию… В ближайшие несколько лет это изменится, так как искусственный интеллект становится все более распространенным и потенциально делает каждую компанию и каждого работника умнее, быстрее и производительнее»[227]. Несколько лет назад такой прогноз показался бы ужасным преувеличением, сегодня же он выглядит беспроигрышной ставкой.

Резюме

• Основанный на правилах, или символический, подход к искусственному интеллекту сейчас пребывает в спячке. Кажется очень маловероятным, что он выживет за пределами узких областей, а возможно, и совсем исчезнет.

• Машинное обучение — искусство и наука создания программных систем, которые могут обнаруживать закономерности и формулировать выигрышные стратегии после просмотра множества примеров, — в итоге выполняет свои давние обещания и уже приносит определенную пользу.

• Системы машинного обучения действуют лучше, когда становятся больше, работают на более быстром и специализированном аппаратном обеспечении, получают доступ к большему количеству данных и содержат улучшенные алгоритмы. Поскольку все эти вещи сейчас активно совершенствуются, то и машинное обучение быстро прогрессирует.

• Нейронные сети достигают наилучших результатов при контролируемом обучении, когда есть размеченные примеры. Однако в неконтролируемом обучении — основном способе, которым люди познают мир, — прогресс нейронных сетей невелик.

• Контролируемое обучение идеально подходит для автоматизации многих задач, которые сейчас выполняют люди, особенно в сферах сопоставления образов, диагностики, классификации, прогнозирования и рекомендаций. Машинное зрение, распознавание речи и другие вещи, которые некогда считались невозможными, сейчас во многих областях осуществляются на уровне, сравнимом с человеческим.

• Пока мы находимся на ранних стадиях распространения машинного обучения. Оно будет проникать в экономику и общество, особенно после того, как стало доступно любому желающему в облаке.

• Системам машинного обучения (и всем прочим формам искусственного интеллекта) по-прежнему не хватает здравого смысла.

Вопросы

1. Выполняете ли вы какую-нибудь важную работу по сопоставлению образов, диагностике, классификации, прогнозированию и рекомендациям? Рассматриваете ли вы применение машинного обучения для каких-либо из перечисленных областей?

2. Принятие каких решений и выполнение каких операций (если таковые есть) вы могли бы доверить системам искусственного интеллекта? Какие из этих решений и задач в случае автоматизации потребуют присмотра человека?

3. Вы согласились бы завтра утром поехать на работу на машине с автоматической системой вождения? Как вы думаете, будет ли вам комфортно делать это через пять лет? Почему?

4. Заполните пропуск в предложении: «Если конкуренты реализуют успешную систему машинного обучения для __________, у нас будут серьезные проблемы».

5. Какой стратегией машинного обучения вы пользуетесь? Насколько далеки вы от внедрения машинного обучения в своей организации?

Глава 4. Привет, робот!

Тою порою Фетида достигла Гефестова дома…Бога, покрытого потом, находит в трудах, пред мехамиБыстро вращавшегось: двадцать треножников вдруг он работал,В утварь поставить к стене своего благолепного дома.Он под подножием
Добавить цитату