15 страница из 16
Тема
с пренебрежимым старением. Сегодня также известно о существовании видов, отдельные представители которых прожили века и тысячелетия, и предел их жизни неизвестен.

Аристотель еще много веков назад подметил, что растения и животные тоже старятся по-разному. Значительные различия в их клетках влияют на модели возрастного изменения, вплоть до полного нестарения или пренебрежимого старения (скажем, у таких многолетних, как секвойя). Бактерии, одноклеточные ядерные и грибы, к примеру, способны и стареть, и не стареть, что зависит от способа их размножения, симметричности деления, типа клеток и хромосом.

Даже в одном и том же организме могут существовать коротко– и долгоживущие клетки. Так, человеческие сперматозоиды живут три дня (в то время как производящие их гоноциты не старятся вообще), клетки прямой кишки – обычно четыре дня, клетки кожи – две или три недели, эритроциты – четыре месяца, лейкоциты – больше года, а нейроны неокортекса[95], как правило, погибают только вместе с телом. Сегодня, вопреки тому, что нам было известно до недавнего времени, мы также знаем следующее: благодаря стволовым клеткам, которые все-таки присутствуют в некоторых областях мозга, нейроны последнего способны к регенерации[96].

Клетки с кольцевыми хромосомами (как у большинства бактерий) в идеальных условиях, как правило, биологически «бессмертны», тогда как с линейными (как в большей части соматических клеток многоклеточных организмов) – обычно смертны, если в них не разовьется рак и не прекратится старение. Теперь нам уже известно, что в результате мутаций подверженных старению соматических клеток раковые способны стать биологически «вечными». Чтобы выявить секрет бессмертия, изучают стволовые клетки опухолей. То есть, даже несмотря на злокачественность, те тоже могут помочь раскрыть тайну старения.

Раковые клетки производят фермент теломеразу. Соматические, как правило, у взрослых особей ее не продуцируют. Исключение составляют некоторые случаи, когда этот процесс способствует постоянной регенерации на клеточном уровне, как у планарий и некоторых амфибий.

Вышеприведенные примеры демонстрируют: за миллионы лет, что имелись в распоряжении у природы, она успела поэкспериментировать с различными формами жизни, видами организмов, способами воспроизводства, типами полового размножения и клеток, паттернами роста и моделями возрастных изменений, в том числе и с нестарением.

Румынская врач-гериатр Анка Иовицэ в 2015 г. выпустила книгу «Межвидовая пропасть старения» (The Aging Gap Between Species). Автор начала с поиска «леса за деревьями»[97]:

«Старение – загадка, которую необходимо разгадать.

Этот процесс обычно изучают на нескольких биологических моделях: плодовых мушках, червях или мышах. Все эти виды подвержены быстрому старению, что благоприятно сказывается на лабораторных бюджетах и приходится кстати в качестве краткосрочной стратегии, поскольку у кого есть время на изучение видов, живущих десятки лет?

Однако межвидовая разница в долголетии – величина куда большего порядка, чем любое продление жизни, достигнутое в лабораторных условиях. Именно поэтому при попытке собрать узкоспециальные исследования в легкий для понимания труд мне пришлось изучить бесчисленные источники информации. Данная книга и есть попытка достичь этой цели.

Старость неизбежна – или, по крайней мере, так говорят. Но я никогда не принимала что-либо на веру лишь по причине авторитетности источника, поэтому подвергла сомнению межвидовую схожесть возрастных изменений. И в ходе поисков с удивлением обнаружила, что геронтологии не хватает разнообразия биологических моделей. В глубинах самых смутных и невразумительных научных трудов я неутомимо искала ответ на вопрос: «Как же стареют все остальные виды и чем они могут в этом различаться?»

Если вы когда-нибудь держали домашнее животное, то наверняка заметили, что все живут по-разному. Вы за 10 лет ничуть не изменились, а ваш пес или кот уже начал страдать от возрастных болезней. Продолжительность жизни широко варьируется как между самими видами, так и между их отдельными представителями. Какие же механизмы лежат в основе этой межвидовой пропасти старения?»

В своей книге Иовицэ дала прекрасный обзор современных научных знаний о возрастных изменениях и, среди прочего, сообщила об огромных различиях между разными видами (от бактерий до китов), привела разнообразные теории старения, неотении[98] и прогерии[99], а также осветила такие основные темы, как стволовые клетки, рак, теломераза и теломеры. В заключение она написала:

«Старение – явление пластичное. Я стремилась разглядеть за деревьями лес, изложить разницу в старении различных видов в доступной логической последовательности и записать ответы на эти вопросы простым языком. Изучение старения слишком важно, чтобы прятать его за закрытыми дверями формального научного жаргона.

Геронтология как наука может развиваться, изучая не только недолговечные виды, вроде мышей с червями, но также постепенно и более пренебрежимо стареющие, к примеру, губок, голых землекопов, морских ежей, протеи и тысячелетние деревья. Если возрастные изменения – это повышение темпа смертности и снижение фертильности, то существование вышеперечисленных видов неявно намекает на то, что старость – случайная ошибка природы.

Благодаря продолжающейся во взрослых соматических тканях экспрессии теломеразы долгоживущие виды иногда способны хотя бы частично восстанавливать органы. При этом онкологические заболевания встречаются у них не чаще, чем у остальных. Возможно, такие организмы развили альтернативные механизмы сдерживания рака, увеличив непосредственный контроль над клетками. Несмотря на активную экспрессию теломеразы в соматических стволовых клетках, голый землекоп считается животным, устойчивым к раку.

Из-за масштаба проекта эта книга постоянно пребывает в стадии написания. Еще столько бесчисленных видов предстоит открыть. Еще столько опытов предстоит провести и столько теорий – разработать. Старость – ошибка природы, а геронтология – наука о старости – создана, чтобы разрешить загадку старения».

Истоки научного исследования старения

В конце XIX в., а именно в 1892 г., когда революционные идеи Дарвина об эволюции еще только-только завоевывали признание научного мира, немецкий биолог Август Вейсман разработал теорию наследственности, основанную на бессмертии зародышевой плазмы (гермоплазмы). Согласно его гипотезе, новые клетки организма образуются вокруг субстанции, полученной в результате соединения сперматозоида с яйцеклеткой; она являет собой источник первичной, не прерывающейся поколениями преемственности[100].

Теория, предвосхитившая развитие современной генетики, в то время была известна как «вейсманизм». Она гласила, что наследственная информация передается исключительно через зародышевые клетки гонад (яйцеклеток и сперматозоидов), но не посредством соматических клеток. Идея о невозможности передачи информации от соматических клеток зародышевым (вопреки популярной тогда теории французского биолога Жана-Батиста Ламарка) получила название «барьер Вейсмана».

Вейсман допустил бессмертие зародышевой плазмы и, наоборот, бренность сомы. Еще он утверждал, что смерть не обязательно присуща жизни, а скорее является следующим биологическим этапом, необходимым для эволюции (избавления от непригодных и низших организмов)[101]:

«Смерть следует рассматривать как благоприятное для вида событие, как уступку внешним условиям, а не абсолютную изначальную данность существования. Будучи завершением жизни, она отнюдь не присуща, как принято считать, всем организмам.

Сама смерть, как и долгий либо короткий срок жизни, всецело зависит от адаптации. Гибель не представляет собою непременное свойство живой материи; она не обязательно связана с размножением и не является его необходимым следствием».

Вскоре после этого, в 1908 г., Илья Мечников, русско-французский биолог и лауреат Нобелевской премии по физиологии и медицине,

Добавить цитату