12 страница из 22
Тема
то достоинство, что она объясняет, почему внутренние планеты (Меркурий, Венера, Земля, Марс) в основном каменные, тогда как внешние (Юпитер, Сатурн, Уран, Нептун) — газово-ледяные гиганты. Дело в том, что более легкие элементы в протопланетном диске должны были концентрироваться дальше от центра, чем тяжелые, хотя и со значительным турбулентным перемешиванием. Наиболее распространенная теория образования планет-гигантов состоит в том, что сначала у них сформировалось скальное ядро, а затем его гравитация привлекла водород, гелий и некоторое количество водяного пара плюс относительно небольшое количество других веществ. Однако воспроизвести такой сценарий при помощи существующих моделей формирования планет пока не получается.

В 2015 году Гарольд Левисон, Катерина Кретке и Мартин Дункан провели компьютерное моделирование, воспроизводящее альтернативный вариант: ядра медленно аккумулировались из мелких камней или «валунов» — кусков каменного вещества размером до метра в поперечнике. В теории этот процесс способен построить ядро, в 10 раз превосходящее по массе Землю, за несколько тысяч лет. Предыдущие модели выявили в этом сценарии другую проблему: он порождает сотни планет размером с Землю. Теперь же удалось показать, что этой проблемы можно избежать, если предположить, что валуны возникают достаточно медленно, чтобы успеть провзаимодействовать между собой на гравитационном уровне. Тогда более крупные валуны выталкивают остальные за пределы диска. Моделирование с разными параметрами часто давало «на выходе» от одного до четырех газовых гигантов на расстоянии 5–15 а.е. от Солнца, что соответствует нынешней структуре Солнечной системы. Одна астрономическая единица (а.е.) равна расстоянию от Земли до Солнца; измерять относительно небольшие космические расстояния такими наглядными единицами часто бывает удобно.

Хороший способ проверить небулярную модель — выяснить, идут ли где-нибудь в космосе аналогичные процессы. В 2014 году астрономы сделали замечательный снимок молодой звезды HL Тельца, расположенной на расстоянии 450 световых лет в указанном созвездии. Эта звезда окружена яркими концентрическими кругами газа, которые чередуются с темными кольцами. Темные кольца почти наверняка образованы зарождающимися планетами, выметающими или собирающими на себя пыль и газ. Было бы трудно найти более яркое подтверждение теории.

Нетрудно поверить, что гравитация может заставить какие-то вещи собраться в комок, но как и за счет чего она может разбросать их? Попробуем представить себе это на уровне интуиции. Вновь заверю вас, что серьезные математические выкладки, которых мы не будем здесь приводить, в целом подтверждают это. Начнем со слипания.

Газ, молекулы которого гравитационно притягивают друг друга, сильно отличается от обычного нашего представления о газах. Если наполнить газом комнату, он очень быстро распределится по всему объему так, чтобы всюду иметь одинаковую плотность. Вы не найдете в своей гостиной случайных карманов, где воздуха почему-то нет. Причина в том, что молекулы воздуха летают вокруг повсюду, сталкиваются и отлетают случайным образом и очень быстро заполняют все доступное пространство. Такое поведение зафиксировано в знаменитом втором законе термодинамики, традиционная интерпретация которого гласит, что газ стремится к наибольшему беспорядку. «Беспорядок» в данном контексте относится к тому, что все должно быть как следует перемешано; это означает, что ни в одной области плотность газа не должна быть выше, чем в любой другой.

На мой взгляд, эта концепция, формально известная как энтропия, слишком скользкая, чтобы ее можно было обозначить одним простым словом, таким как «беспорядок», — хотя бы потому, что словосочетание «равномерно перемешанный», мне кажется, указывает скорее на упорядоченное состояние. Но пока я хочу лишь обозначить традиционную границу. На самом деле в математической формулировке вообще не упоминается ни порядок, ни беспорядок, но она слишком формальна и сложна, чтобы обсуждать ее здесь.

То, что верно для комнаты, верно, конечно, и для большой комнаты. Так почему бы нам не взять комнату размером с целую Вселенную? Более того, почему не рассмотреть саму Вселенную? Ведь ясно, что второй закон термодинамики требует, чтобы весь газ во Вселенной распределился равномерно по всему ее объему, образовав что-то вроде разреженного тумана.

Если бы это было так, то для человечества это было бы очень плохой новостью, поскольку мы с вами состоим не из разреженного тумана. Мы довольно плотные, с этим не поспоришь, и живем на довольно большом комке вещества, которое обращается по орбите вокруг еще более крупного комка — такого крупного, что он поддерживает энергетические ядерные реакции, порождая тепло и свет. Неудивительно, что те, у кого не лежит сердце к обычным научным описаниям происхождения человечества, часто привлекают второй закон термодинамики, чтобы «доказать», что мы не могли бы существовать, если бы некое гиперразумное существо намеренно не сотворило нас и не организовало Вселенную в соответствии с нашими запросами.

Однако термодинамическая модель газа в комнате не годится для построения модели поведения Солнечной туманности — или Вселенной в целом. В ней рассматриваются не те типы взаимодействия. Термодинамика предполагает, что молекулы замечают друг друга только при столкновениях; в этом случае они отскакивают друг от друга. Столкновения носят абсолютно упругий характер (это значит, что энергия при столкновении не теряется), так что молекулы продолжают летать и сталкиваться вечно. Формально можно сказать, что силы, управляющие взаимодействием молекул в термодинамической модели газа, — это силы отталкивания с малым радиусом действия.

Представьте себе вечеринку, где всем гостям завязывают глаза и затыкают уши, так что узнать о присутствии в зале кого-то еще можно только одним способом: наткнувшись на него. Вообразите себе также, что все присутствующие чрезвычайно необщительны, поэтому любые двое, случайно столкнувшись, спешат сразу же оттолкнуться и разойтись. Скорее всего, после некоторого начального периода многочисленных столкновений и шатания по залу гости распределятся по нему довольно равномерно. Распределение не будет абсолютно равномерным все время, поскольку иногда гости будут случайно сближаться и даже сталкиваться, но в среднем они будут распределены по залу. Так ведет себя термодинамический газ, в котором в роли гостей выступает гигантское число молекул.

Газовое облако в космосе — явление более сложное. При столкновении молекулы по-прежнему разлетаются, но в облаке присутствует и другая сила — гравитация. Термодинамика не учитывает гравитацию, потому что в этом контексте ее действие пренебрежимо мало. Но в космологии гравитация — доминантный игрок, потому что газа в пространстве очень-очень много. Термодинамика помогает ему сохранять газообразность, но именно гравитация определяет, что делает газ в крупных масштабах. Гравитация — это сила притяжения с большим радиусом действия; она представляет собой почти точную противоположность упругим столкновениям. Говоря о «большом радиусе действия», мы имеем в виду, что тела гравитационно взаимодействуют между собой, даже если далеко разнесены в пространстве. Тяготение Луны (и в меньшей степени Солнца) поднимает приливы в земных океанах — а ведь до Луны от

Добавить цитату