11 страница из 12
Тема
направлении ехал велосипедист? Создатель Холмса сэр Артур Конан Дойл упустил одну важную деталь. Определить направление движения велосипеда по отпечатку шины действительно возможно.


Ответ

29. НА ВЕЛОСИПЕД, ШЕРЛОК!

В каком направлении – слева направо или справа налево – ехал велосипедист, оставивший эти следы?


Холмс был прав в том, что сначала необходимо определить, какой след оставлен каким колесом. Но это можно сделать, не зная глубины отпечатка велосипедных шин.



А вот еще одна загадка о движении велосипеда. Ответ вы можете понять интуитивно. Одно изображение покажется вам правильным, а другое нет. Но удастся ли вам объяснить почему?


Ответ

30. НЕЧЕТКАЯ МАТЕМАТИКА

Фотограф снимает движущийся велосипед. Велосипед едет по горизонтальной дороге либо слева направо, либо справа налево – направление не имеет значения. Колесо – это белый диск, на котором изображены два пятиугольника.

Какое из двух изображений на рисунке – фотография, сделанная фотографом?


Соль этой головоломки в том, что предсказать движение катящейся окружности сложнее, чем кажется на первый взгляд.

Следующая задача взята из теста на проверку общих способностей (SAT), который в 1982 году прошли 300 тысяч американцев. Только три ученика решили ее правильно. А вы сможете?


Ответ

31. ХОЖДЕНИЕ ПО КРУГУ

Радиус окружности A равен 1/3 радиуса окружности B. A совершает один оборот вокруг B и возвращается в исходную точку. Сколько раз окружность A обернется вокруг своего центра за это время?

а) ;

б) 3;

в) 6;

г) ;

д) 9.

А теперь обратимся к головоломке, которая заставит вас размышлять совершенно иначе.


Ответ

32. ВОСЕМЬ ЧИСТЫХ ЛИСТОВ БУМАГИ

На столе лежат восемь квадратных листов бумаги одинакового размера. Их края образуют следующий рисунок, причем только лист под номером 1 виден полностью.

Можете ли вы пронумеровать все остальные листы с учетом того, что 2 означает второй уровень, 3 – третий и т. д.?

Впервые о задаче с чистыми листами бумаги я узнал из блестящей книги Кобона Фуджимуры The Tokyo Puzzles («Токийские головоломки»).

В 1930–1970-х годах Фуджимура был королем головоломок в Японии. Он написал и опубликовал много книг, в том числе несколько бестселлеров, а в 1950-х даже организовал собственную еженедельную телепрограмму о головоломках. Популярность Фуджимуры явилась предвестником современного бума японских головоломок, вершиной которого стал международный успех судоку в 2000-х годах (об этом я расскажу подробнее чуть дальше в этой главе).

Японцы склонны более игриво относиться к числам, чем жители стран Запада, – во всяком случае, так мне показалось во время двух визитов в Японию. Японские школьники рассказывают таблицу умножения с такой же радостной непринужденностью, как и детские стишки. В прошлом популярным развлечением в этой стране были игры с числами на билетах метро. Кроме того, в Японии ментальную арифметику[18] превратили в зрелищное состязание. Овладение навыками вычислений на счетах – популярное внеклассное занятие, а для лучших мастеров в этом деле проводятся турниры. В 2012 году я побывал на национальном чемпионате по счету на счетах, кульминацией которого стала игра, в ходе которой участники состязания должны были на воображаемых счетах сложить 15 чисел, демонстрируемых им менее чем за две секунды. Это было напряженное и захватывающее соревнование!

Вот еще одна головоломка Фуджимуры, которая мне очень нравится.


Ответ

33. КВАДРАТ ИЗ ДВУХ ПОЛОВИНОК

Большой квадрат разделен на 16 квадратов меньшего размера. На рисунке изображены два способа разделить большой квадрат на два одинаковых фрагмента.

Существует еще четыре способа сделать это. Сможете ли вы их найти?

Следует уточнить, что разрезать квадрат можно только по внутренним линиям, а также что две полученные фигуры должны быть идентичными. Иными словами, если бы квадраты были изготовлены из картона, вы могли бы полностью совместить их, наложив один на другой в горизонтальной плоскости. Однако если ради этого вам придется перевернуть хоть одну фигуру (то есть повернуть верхней стороной вниз), то они не будут считаться идентичными.


И наконец, головоломка Фуджимуры с кривыми линиями. Возможно, для ее решения вам понадобится формула площади круга, равная произведению числа π на квадрат радиуса круга, или πr2.


Ответ

34. КРЫЛО И ЛИНЗА

На рисунке изображена четверть круга, в которой заключены два полукруга меньшего размера. Докажите, что площадь фигуры А, имеющей форму крыла, равна площади фигуры В, имеющей форму линзы.


Эта головоломка мне нравится не только визуально, но и потому, что напоминает о японской традиции XVII–XIX столетий. В те времена на гробницах и в храмах выставлялись деревянные таблички с начертанными на них задачами по геометрии. Такие таблички назывались сангаку и обозначали подношения божествам, а также публично объявляли о последних достижениях. Сангаку превращали математику в общественное событие, источник развлечения и восхищения. Я видел табличку сангаку в храме в Киото. На ней были изображены круги, треугольники, сферы и другие фигуры, красиво разрисованные белым и красным цветами. Геометрические фигуры образуют гармоничную, артистичную композицию, передающую эстетику, совершенно не свойственную сугубо дидактическим рисункам в западных учебниках геометрии. Как правило, сангаку содержит финальный чертеж задачи и лаконичную подпись внизу, как на табличке из храма в Нагое, созданной в 1865 году (см. рисунок ниже). Автором задачи считается пятнадцатилетний мальчик по имени Танабе Сигетоси.



Ответ

35. КРУГИ САНГАКУ

На рисунке изображены круги пяти размеров. В порядке увеличения можно насчитать шесть белых кругов, семь темно-серых, три светло-серых, один круг, обозначенный пунктирной линией и вписанный в треугольник, а также один круг, нарисованный сплошной линией.

Сколько радиусов белого круга можно разместить вдоль радиуса круга, обозначенного пунктирной линией?


Задача поражает своим изяществом. Трудно понять, с чего следует начать. Но как только вы найдете способ выразить радиус определенных кругов через радиус других кругов, обнаружите поистине прекрасную головоломку.


Автор следующей задачи – японский подросток еще младше Сигетоси. В 1847 году сангаку тринадцатилетнего Сато Наосуэ появилась в храме, расположенном почти в 500 километрах от Токио. Эта головоломка сложнее предыдущей, поскольку, как почти во всех задачах с прямоугольными треугольниками, для ее решения нужно знать теорему Пифагора.


Ответ

36. ТРЕУГОЛЬНИК САНГАКУ

На рисунке изображены круги трех размеров: два черных, три белых и один серый. Докажите, что радиус серого круга вдвое больше радиуса черного круга.


В Японии существует традиция устилать пол дома татами. Сплетенные из соломы, эти маты такие мягкие, что по ним можно ходить босиком. Обычно татами прямоугольной формы, а их длина в два раза больше ширины.


Ответ

37. ШАГАЯ ПО ТАТАМИ

На рисунке слева изображена схема размещения татами. Предположим, вы идете из точки A в точку B по краю татами. Если вам необходимо найти самый длинный путь, можно начать передвигаться по самому длинному отрезку – например, по верхнему краю, как показано на рисунке в середине, или по нижнему, как на рисунке справа.

Однако существует и более длинный маршрут. Сможете ли вы найти его?


Если вам когда-нибудь понадобится уложить татами, вы должны знать, что есть два способа это сделать – один приносит удачу, а другой нет. Первый сводится к укладыванию трех матов в виде буквы T. Суть второго – уложить четыре татами так, чтобы они сходились в одной точке углами в виде знака +. В схемах на удачу четыре мата никогда не сходятся в одной точке.

Добавить цитату