11 страница из 13
Тема
и «биоколлоидисты» утверждали, что антитела, ферменты и все такое прочее на самом деле состоят из коллоидов, то есть разнообразных смесей маленьких молекул{60}. В центре их внимания были не гигантские органические молекулы, удерживаемые вместе сильными ковалентными связями, а агрегации мелких молекул, удерживаемых вместе относительно слабыми связями. В начале 1920-х, однако, эта точка зрения пошатнулась благодаря немецкому химику-органику Херманну Штаудингеру (1881–1965), который показал, что такие большие молекулы, как крахмал, целлюлоза и белки, на самом деле представляют собой длинные цепочки из коротких повторяющихся молекулярных блоков, удерживаемых вместе ковалентными связями. Однако поначалу представление Штаудингера о том, что он называл Makromoleküle (макромолекулы), встретило почти всеобщее неприятие. Макромолекулярная теория была отвергнута даже коллегами Штаудингера по Швейцарской высшей технической школе (ETH) в Цюрихе, где он был профессором, пока не переехал в 1926-м во Фрайбург. И только в 1953-м (в год открытия двойной спирали) Штаудингер наконец получил Нобелевскую премию за свой весомый вклад в науку.

В последние годы мы пришли к тому, что рассматриваем клетку, эту основную единицу жизни, как фабрику, взаимосвязанный ряд сборочных линий, движимых белковыми машинами{61}, созданными эволюцией за тысячи, миллионы или даже миллиарды лет для выполнения специальных задач. Эта модель отмечает возрождение идеи, имевшей хождение в XVII веке, прежде всего в трудах Марчелло Мальпиги (1628–1694), итальянского врача, одного из первых микроскопистов{62}. Мальпиги предположил, что телесными функциями управляют крохотные «органические машинки».

Теперь мы знаем, что это белки, образующие множество различных классов. Катализаторы, например, ускоряют огромное разнообразие химических реакций, а фиброзные белки вроде коллагена – это главный структурный элемент, четверть всех белков, найденных у позвоночных, то есть животных со спинным хребтом, включая млекопитающих. Эластин, напоминающий резину, составляет основу легочной ткани и стенок артерий. Мембраны вокруг наших клеток содержат белки, которые помогают вводить и выводить молекулы в клетку и из клетки и участвуют в клеточной коммуникации; глобулярные белки связывают, преобразуют и выпускают химические вещества. И так далее.

Последовательность ДНК непосредственно кодирует структуру каждого белка, определяющую его активность. Генетический текст определяет линейную последовательность аминокислот, которая в свою очередь определяет сложную трехмерную структуру окончательного белка. После синтеза эта линейная полипептидная цепочка складывается в свою характерную форму: некоторые части образуют пластины, другие – стопки, складки, завитушки, закручиваются в спирали и в другие сложные конфигурации, которыми определяется работа механизма. Некоторые части белковой машины гибкие, другие – жесткие. Некоторые белки – это сборочные узлы, части большей трехмерной белковой машины.

Давайте посмотрим на АТФ-синтетазу как на один из примечательных и ярких примеров молекулярной машины. Этот фермент, в двести тысяч раз меньше булавочной головки, сделан из тридцати одного белка и, вращаясь с частотой 60 раз в секунду, способен создавать энергетическую валюту клеток – молекулу аденозинтрифосфата, или АТФ. Вы не смогли бы двигаться, думать или дышать без этого механизма. Другие белки – это моторы, как динеин, за счет которого движется сперматозоид; миозин, который движет мышцами; и кинезин, который «ходит» на паре ножек (когда присоединяется топливо в виде АТФ, одна ножка отгибается и шлепает вокруг, пока не зацепится, чтобы сделать следующий шаг) и имеет хвост, чтобы возить грузы по клеткам. Некоторые из этих транспортных роботов приспособлены для перемещения только одного вида груза: таков гемоглобин, который состоит из четырех белковых цепочек – двух альфа и двух бета, каждая из которых располагает кольцеобразной группой гема, в центре которой находится атом железа, чтобы разносить кислород по всему телу. Железо обычно крепко сцепляется с кислородом, но этот созданный эволюцией механизм обеспечивает обратимую связь молекулы кислорода с каждым из четырех гемов в каждой молекуле гемоглобина.

Светопоглощающий пигмент – это секрет одной из самых важных на свете машин, той, которая управляет экономикой жизни океанов и поверхности планеты. Хотя разные виды растений, водорослей и бактерий развили различные механизмы для запасания световой энергии, у них у всех есть структура, называемая фотохимическим реакционным центром. Там можно найти белки-антенны, включающие в себя несколько молекул светопоглощающего пигмента хлорофилла. Они улавливают солнечный свет в виде частиц света – фотонов, а потом проводят их энергию через серию молекул в реакционный центр, где она используется для чрезвычайно эффективного превращения углекислоты в сахара. Фотосинтетические процессы происходят в местах, настолько плотно набитых пигментными молекулами, что там вступают в игру квантово-механические процессы{63}. (Самая головокружительная ветвь физики, квантовая механика – разработанная в числе других Эрвином Шрёдингером, – имеет дело с микроскопическими явлениями.) Это одна из нескольких квантовых машин, используемых живыми существами в зрении, электронном и протонном туннелировании, обонянии и магниторецепции{64}. Это выдающееся открытие – еще одно доказательство идей Шрёдингера, который также рассматривал возможность того, что квантовые флюктуации играют роль в биологии{65}.

Каждая молекулярная машина создана эволюцией для автоматического выполнения очень специфической задачи, от восприятия зрительных образов до сгибания мышц. Вот почему можно думать о них как о маленьких роботах. Как писали Чарльз Тэнфорд и Жаклин Рейнольдс в книге «Природные роботы» (2001), «у него нет сознания; он не управляется разумом или высшим центром. Всё, что делает белок, заложено в его линейный текст, производный от текста ДНК».

Самый важный прорыв в молекулярной биологии после открытия генетического кода был в определении деталей главного робота – рибосомы, которая занимается синтезом белка и таким образом направляет производство всех остальных клеточных роботов. Молекулярные биологи десятки лет знали, что в рибосоме сосредоточен центр всех танцев с производством белков. Чтобы функционировать, рибосоме нужны две вещи: матричная РНК (мРНК), инструкция по изготовлению белка, скопированная из хранилища генетической информации в клетке – с ДНК; и транспортная РНК (тРНК), которая приносит на хвосте аминокислоты, используемые для создания белка. Рибосома кодон за кодоном считывает последовательность с мРНК и к каждому кодону подбирает тРНК с соответствующим антикодоном, выстраивая их груз – аминокислоты – в правильном порядке. Рибосома также действует как катализатор-рибозим: соединяет аминокислоты ковалентной химической связью, добавляя их тем самым к растущей белковой цепочке. Синтез прекращается, когда в последовательности РНК появляется кодон «стоп», но после этого полимер из аминокислот должен еще сложиться в нужную трехмерную структуру, чтобы стать биологически активным белком.

Бактериальные клетки содержат около тысячи рибосомных комплексов, что позволяет им непрерывно синтезировать белок – как для замены деградировавших белковых молекул, так и для изготовления новых для дочерних клеток во время деления. Рибосому можно рассматривать под электронным микроскопом и видеть, как она изгибается и меняет форму в ходе работы. Проворот храповика{66} в глубине рибосомы – ключевой момент белкового синтеза. Весь синтез белка происходит чрезвычайно быстро: сборка цепочки длиной около ста аминокислот занимает секунды.

Как и в случае двойной спирали, выявить подробности строения рибосомы удалось с помощью рентгеновской кристаллографии. Сначала, однако, надо было заставить рибосомы кристаллизоваться – как кристаллизуется из

Добавить цитату