4 страница из 13
Тема
его последователи распространили механистические объяснения природных явлений на биологические системы, а затем исследовали их приложения. С самого рождения этого великого дела, однако, критики выражали опасения, что в погоне за эффективным господством над природой будут забыты более важные моральные и философские проблемы. Вместе с фаустовым духом современной науки пришел спор о приемлемости для человечества «игры в Бога».

Для некоторых не было вопроса, что превосходным примером принятия роли божества было бы создание чего-нибудь живого в лаборатории. В своей книге «Природа и происхождение жизни: в свете новых знаний» 1906 года французский биолог и философ Феликс ле Дантек (1869–1917) обсуждает эволюцию – или «трансформизм», как ее называли в додарвиновских дискуссиях о том, как меняются виды, – современных видов от более ранних и простых организмов, «живой протоплазмы, сведенной к минимальной сумме наследственных признаков». Он писал: «Архимед высказал символическое утверждение, которое, если принять его буквально, абсурдно: „Дайте мне точку опоры, и я переверну Землю“. Примерно так же трансформист наших дней имеет право сказать: „Дайте мне живую протоплазму, и я воссоздам целиком животное и растительное царства“». Ле Дантек очень хорошо понимал, что теми примитивными методами, которые были у него в распоряжении, эту работу было бы трудно выполнить: «Наше знакомство с коллоидами [макромолекулами] еще столь недавнее и рудиментарное, что нам не стоит рассчитывать на скорый успех в попытках изготовить живую клетку». Ле Дантек был так уверен, что будущее принесет синтетические клетки, что говорил: «С новыми знаниями, полученными наукой, просвещенному разуму больше не нужно видеть изготовление протоплазмы для того, чтобы убедиться в отсутствии всякой существенной разницы и абсолютного разрыва между живой и неживой материей»{16}.

В предыдущем веке границу между одушевленным и неодушевленным провели химики, в том числе Йёнс Якоб Берцелиус (1779–1848), шведский ученый, который считается одним из пионеров современной химии. Берцелиус впервые применил атомную теорию к «живой» органической химии{17}, опираясь на работу французского отца химии Антуана Лавуазье (1743–1794) и других ученых. Он определил две крупных ветви химии как «органическую» и «неорганическую»; органические соединения – это те, которые отличаются от всех прочих тем, что включают в себя атомы углерода. В первый век применения термина «органический» он означал «происходящий от живого». Но примерно в то время, когда Берцелиус выдвинул эти определения, которые мы используем до сих пор, в своем влиятельном учебнике химии начала XIX века, виталисты и неовиталисты рассматривали органический мир еще более однозначно: «Органические вещества имеют по крайней мере три составляющие… они не могут быть приготовлены искусственно… но лишь через сродства, связанные с жизненной силой. Из этого ясно, что одни и те же правила неприменимы к органической и неорганической химии, так как здесь существенно влияние жизненной силы»{18}.

Немецкий химик Фридрих Вёлер (1800–1882), некоторое время работавший с Берцелиусом, совершил открытие, которое долго считалось «опровержением» витализма: химический синтез мочевины. В современных учебниках, в лекциях и статьях вы все еще найдете ссылки на его experimentum crucis. Это достижение стало знаковым моментом в научных анналах, отметив начало конца влиятельной идеи, восходящей к античности, – а именно, что есть некая «жизненная сила», которая отделяет одушевленное от неодушевленного, характерный «дух», который пропитывает все тела, чтобы дать им жизнь. Из заурядных химикатов Вёлер вроде бы создал кое-что от самой жизни – уникальный момент, полный возможностей. В единственном эксперименте он преобразовал химию – до тех пор разделенную на два раздельных царства молекул жизни и неживых химикатов – и увел иголку еще на один стежок прочь от предрассудков к науке. Его открытие пришло всего через десять лет после публикации готического романа Мэри Шелли «Франкенштейн», а тот появился всего через несколько лет после попытки Джованни Альдини (1762–1834) оживить казненного преступника электрическим шоком.

Вёлер объяснил свой успех в письме к Берцелиусу, датированном 12 января 1828 года{19}, описав случай, когда в Политехнической школе в Берлине он нечаянно создал мочевину, основной азотсодержащий компонент в моче млекопитающих. Вёлер пытался синтезировать щавелевую кислоту, содержащуюся в ревене, из циана и водного раствора аммиака и в итоге получил белую кристаллическую субстанцию. Аккуратно экспериментируя, он сделал точный анализ натуральной мочевины и показал, что это то же самое вещество, что и его кристаллы. До тех пор мочевину получали только из животных источников.

Тревожась, что не получает ответа от Берцелиуса, Вёлер снова написал ему в письме от 12 февраля 1828 года: «Я надеюсь, что мое письмо от 12 января дошло до вас, и хотя я жил в ежедневном и ежечасном ожидании ответа, я не стану ждать дольше, но напишу вам сейчас, потому что не могу дольше, так сказать, придерживать свою химическую мочевину, и надеюсь опубликовать то, что я могу получить мочевину без участия почки, будь то человеческой или собачьей; аммиачная соль циановой кислоты[4] и есть мочевина». Вёлер продолжал: «Предполагаемый цианат аммония был легко получен путем взаимодействия цианата свинца с раствором аммония. Цианат серебра и раствор хлорида аммония тоже годятся. Были получены четырехгранные прямоугольные призмы, красиво кристаллизующиеся; если их обработать кислотами, то не выделяется циановая кислота, а если щелочами – ни следа аммиака. Но с азотной кислотой образуются блестящие хлопья легко кристаллизующегося соединения, причем сильно кислотного; я был склонен принять это вещество за новую кислоту, так как при нагревании не образовывалась ни азотная, ни азотистая кислота, зато выделялось много аммиака. Потом я обнаружил, что если раствор насытить щелочью, то снова появляется так называемый цианат аммония, и его можно экстрагировать спиртом. И вот, совершенно внезапно, я получил ее! Все, что было нужно, – это сравнить мочевину из мочи с мочевиной из цианата»{20}.

Когда Берцелиус наконец ответил, его реакция была шутливой и полной энтузиазма: «Тот, кто положил начало своему бессмертию в моче, имеет все основания завершить свой путь вознесения на небеса при помощи того же предмета… и поистине, герр доктор на самом деле придумал трюк, который ведет по истинному пути к бессмертному имени… Это, безусловно, будет очень полезным для будущих теорий».

Тут он попал в точку. В сентябре 1837 года в научное общество в Ливерпуле, известное как Британская ассоциация по развитию науки, обратился Юстус фон Либих (1803–1873), влиятельный ученый, совершивший ключевые открытия в химии, например, он установил важность азота как питательного вещества для растений{21}. Фон Либих обсуждал продемонстрированное Вёлером «удивительное и в какой-то степени необъяснимое получение мочевины без помощи жизненных функций», добавляя, что «началась новая эра в науке»{22}.

Достижение Вёлера вскоре попало в учебники, а именно в «Историю химии» Германа Франца Морица Коппа (1843), в которой было написано, что оно «разрушило ранее принятое разделение между органическими и неорганическими телами». К 1854 году

Добавить цитату