13 страница из 18
Тема
знать, что кто-то подкрадывается или устремляется к ним. Так что естественный отбор играет огромную роль в этом явлении. Но это еще не конец истории.

Давайте взглянем на осьминога (моллюска): у него феноменальный охват поля зрения в 360° и при этом нет слепых пятен. Почему же? Ответ очевиден, если понять, как эволюционировали глаза и у человека, и у осьминога. Примерно двадцать пять раз в истории жизни животных на этой планете независимо друг от друга появлялись глаза. Это значит, что за более чем полмиллиарда лет с момента зарождения жизни на Земле произошло двадцать пять независимых случаев появления органов, чувствительных к свету. Следовательно, глаза позвоночных и осьминогов развивались по-разному.

Светочувствительная часть человеческого глаза, называемая сетчаткой, состоит из группы клеток (у позвоночных это палочки и колбочки) и соединена с мозгом посредством нервного пучка. У позвоночных этот пучок проходит перед сетчаткой, и хотя он совсем крошечный, но все же закрывает часть поля зрения, тем самым создавая слепое пятно. А вот у осьминогов глаз развивался так, что нервы, ведущие к мозгу, присоединялись с задней стороны сетчатки и не заслоняли ту от падающего света. Поэтому у осьминогов и нет слепых зон. У млекопитающих не было ни единого шанса избавиться от своих слепых зон во время эволюции. А вот моллюскам выпала другая участь, и все из-за того, как формировались их глаза. В сущности, динамика процесса развития глаз позвоночных и глаз осьминога и определяет наличие слепого пятна. Естественный отбор, вероятно, имеет весьма отдаленное отношение к отсутствию слепого пятна у осьминога, хотя теперь это преимущество тому очень пригодилось.

Такие сценарии, как отсутствие слепого пятна у осьминога, при рассмотрении вопросов адаптации в природе напоминают нам о трех аспектах эволюции. Первый касается того, что Ричард Левонтин и Стивен Джей назвали антревольтом, вдохновившись архитектурным шедевром – собором Святого Марка в Венеции. После того как собор построили, художники расписали внутреннюю поверхность внушающих благоговейный ужас куполов сценами из Библии. Изображения идеально вписаны в пазухи сводов, те самые антревольты: на одной из них, к примеру, нарисован человек, льющий воду из большого кувшина в сужающееся пространство под своими ногами. Глядя на расписанные поверхности собора, легко вообразить, что надсводчатые строения специально были созданы для того, чтобы демонстрировать картины. Неплохая гипотеза, но неправильная. Антревольты – это несущие конструкции, поддерживающие огромные купола собора, а фрески на них, несмотря на идеальное заполнение пространства, лишь красивое дополнение. Вот и отсутствие слепого пятна у осьминога всего-навсего побочный эффект, который хоть и служит теперь адаптивным ответом, но проявился благодаря «архитектурной» структуре нервных соединений глаза.

Второй аспект эволюции заставляет нас вспомнить, что мы не должны интерпретировать все, что мы видим в мире природы, как адаптацию, ведь это совсем не так. Фактически иногда решение одной проблемы – это компромисс для решения другой. Пример такого компромисса – глаза членистоногих.

Членистоногие – большая группа животных, включающая и насекомых. Они обладают сложными, или фасеточными, глазами, имеющими древнюю структуру, о чем свидетельствуют ископаемые остатки трилобитов[8] с прекрасно сохранившимися фасеточными глазами, возраст которых составляет сотни миллионов лет. Антони ван Левенгук, известный своими наблюдениями за зубным налетом и подвижностью сперматозоидов через свой знаменитый микроскоп, был первым, кто описал удивительную структуру сложных глаз насекомых. Его маленький микроскоп представлял собой ручное устройство с линзой, в котором для подсветки использовалась свеча, установленная за объектом наблюдения. Когда Левенгук поместил роговицу глаза насекомого под микроскоп, он был ошеломлен увиденным. Понемногу меняя положение свечи, ученый нашел такой угол по отношению к образцу, что заметил «перевернутые изображения пламени: и не одно изображение, а несколько сотен. Они были ужасно маленькие, и я видел, что все они двигались». Он увидел свет свечи, проходящий через сотни крошечных фасетов, называемых омматидиями, которые и составляют сложный глаз насекомого. Примечательно, что каждый омматидий сложного глаза связан с мозгом насекомого. Кроме того, чем больше омматидиев, тем больше линз и тем меньше их размер. В итоге дифракция света становится проблемой: появляется размытый фокус или падает острота зрения.

Количество омматидиев может варьироваться. У насекомых с крошечными глазками их меньше: например, у рабочих муравьев, которые в основном полагаются на запах, всего шесть омматидиев. А вот насекомые, которые ориентируются при охоте на движение объекта, такие как стрекозы, имеют более двадцати пяти тысяч омматидиев. Фасеточные глаза очень хорошо улавливают движение: они могут воспринимать примерно двести кадров в секунду (предел человеческого глаза – тридцать кадров в секунду, при большей скорости картинка размывается). Компромисс в данном случае очевиден: сложные глаза с множеством фасетов способны различить мельчайшие движения, но при этом острота зрения снижается. По всей видимости, определенное количество омматидиев у каждого вида выработалось в зависимости от того, что именно нужно насекомому – острота зрения или способность распознавания движения. В этом и заключается компромисс: развитие одной функции компенсирует отсутствие другой.

И третья причуда эволюции выражается в том, как развиваются организмы. В ряде случаев путь, по которому идет развитие, ограничивает то, каким образом в итоге формируются морфологии. Из-за этих ограничений некоторые морфологии, даже если их можно считать оптимальными, просто не эволюционируют. Расположение глаз на нашем лице обусловлено тем, как развивались глаза у позвоночных. Более чем вероятно, что оно связано с эволюцией ширины поля зрения у позвоночных организмов. Генетический код управления развитием глаза ответственен за ограничение места расположения глаз и за процесс их формирования во время эмбрионального развития.

На заре генетики было принято считать, что один ген соотносится с одним ферментом. Джордж Бидл, Эдуард Тейтем и Джошуа Ледерберг даже получили Нобелевскую премию в 1958 году за эту занимательную теорию, которая хоть и звучит правдоподобно для простых одноклеточных, таких как бактерии, но не работает в случае более сложных организмов. Современную трактовку подлинного характера того, как гены управляют сложными фенотипами, изложил Аллан Вильсон в 1970-х годах в Калифорнийском университете в Беркли. Вместе с коллегами в своей лаборатории Вильсон обнаружил, что, хотя морфология и поведение людей и шимпанзе сильно отличаются, их белковые составы схожи. Ученые пришли к выводу, что огромные морфологические и поведенческие различия между организмами не были результатом простых изменений в структуре белков. И выдвинули гипотезу о том, что, напротив, для создания фенотипических модификаций в эволюции изменения в регуляции генов были гораздо важнее, чем простые точечные мутации. Давайте рассмотрим, например, размещение глаз на лицах организмов и, следовательно, управление полем зрения у позвоночных.

Влияние генной регуляции на структуру организма позвоночных стало одним из наиболее важных открытий в биологии за несколько последних десятилетий. И в некотором смысле это явление также связано

Добавить цитату