Этот сценарий в основном и определяет местоположение глаз на голове у позвоночных. Сигнальная молекула, о которой идет речь, была впервые обнаружена у Drosophila melanogaster (плодовой мушки дрозофилы), а уже впоследствии и в геномах позвоночных животных. Гены, продуцирующие белки и взаимодействующие с этой сигнальной молекулой, названы в честь ежа. Из эмбрионов ежей-мутантов, имеющих какие-то отклонения, рождаются неказистые, маленькие, волосатые существа, умирающие еще на ранней стадии развития. В вакханалии глупых названий генов (а биологи, изучающие дрозофил, пожалуй, превзошли в этом всех) поучаствовала и одна из важных сигнальных молекул, окрещенная Sonic Hedgehog (Shh) в честь мультяшного персонажа видеоигры. Другим генам тоже дали «ежиные» имена: индийский еж, пустынный еж и даже еж ухти-тухти (Беатрис Поттер)[9]. Но здесь мы рассмотрим только Shh. Чтобы объяснить сложную цепочку событий, я использую элегантный способ Томаса Джессела, представленный во вставке 3.2 и на рисунке 3.2.
3.2 Как делать циклопов
Сигнальная молекула Sonic Hedgehog (Shh) создает градиент в эмбрионе позвоночных, который контролирует ряд генов, определяющих тип клеток в развивающемся мозге и черепе. На рисунке показан градиент на самой выступающей части лица. Светло-сероватые полосы на диаграммах показывают, где Shh экспрессируется. На крайнем левом изображении этот сигнальный белок включен на полную мощность у нормально развивающегося эмбриона. Он сигнализирует о производстве всех белков, и все они производятся (белый, светло-серый, темно-серый и черный), тогда место для нормального развития глаз образуется где и следует – выше черного белка. Ближайший к Shh серый белок для экспрессии нуждается в наибольшем количестве Shh, а белку других оттенков серого, а также белому и черному белкам необходимы промежуточные количества Shh. На втором изображении часть Shh убрана. Когда это происходит, светло-серый белок, ближайший к белку Shh, не экспрессируется, как показано на третьей панели. По мере того как Shh уменьшается, белые, светло-серые и черные гены не получают достаточного количества Shh для включения, и поэтому их активность снижается, как показано на четвертом изображении. Пятое изображение демонстрирует результат, когда весь градиент Shh удален, а на шестом мы видим, что поле, где располагается глаз, переместилось в самую нижнюю часть развивающегося мозга и один глаз перекрывает другой, создавая существо, похожее на циклопа.
Рис. 3.2. Вот как Томас Джессел объясняет расположение глаз на лице при помощи градиента сигнального механизма Hedgehog. По-разному закрашенные точки представляют четыре белка, которые необходимы для нормального размещения глаз на лице. Серые полосы в нижней части развивающегося мозга представляют собой количество выраженных генов Shh, контролирующих выработку четырех белков. Место, где на рисунке изображены глаза, представляет их конечное положение после развития
Феномен циклопа действительно наблюдается в природе. Крупный рогатый скот и овцы, питающиеся чемерицей (растением рода Veratrum), поглощают большое количество алкалоидов, содержащихся в ней. Как выяснилось, эти алкалоиды блокируют выработку белка в сигнальном пути Hedgehog, создавая ситуацию, показанную на крайнем правом рисунке. Циклопы, появляющиеся среди этих животных из-за снижения производства белка Shh, поразительны, и этот природный феномен помогает нам воочию убедиться в том, как могло бы развиваться расположение глаз у позвоночных. Много генов участвует в формировании нервной системы в голове и глазах, таким образом влияя на расположение глаз. А настройка сигналов, с которыми эти гены взаимодействуют, представляют собой логичный и продуктивный способ осмыслить, как природа может изменить поле зрения. Человеческое развитие остановилось на конкретном поле зрения, тесно связанном с эволюцией нервной системы и глаз, и в итоге мы имеем то, что имеем, – относительно ничтожное поле зрения. Приходится признать: наше поле зрения по сравнению с другими животными, прямо скажем, так себе, но по крайней мере мы знаем почему.
4. Дело вкуса (и запаха)
Восприятие вкуса и запаха у животных
В стране скунсов правит тот, у кого заложен нос.
Крис Фарли, комик
Большинство животных в процессе развития стали весьма разборчивы в еде. Например, если мы чувствуем запах или вкус чего-то дрянного, мы не будем это есть. Скорее всего, этот ответ развился как средство быстрой классификации встреченного объекта, о чем я говорил в главе 2, и подпадает под категорию «пища» – «я ем его». Вероятно, все чувства даны нам, чтобы мы могли сделать выбор: это можно есть, а это – нет. И наша способность принимать такого рода решения зародилась глубоко в прошлом. Не забывайте, что мозг позвоночных имеет три уровня организации. Самый глубокий, самый примитивный уровень унаследован нами от ранних позвоночных и содержит ствол и мозжечок. Следующий уровень, состоящий в основном из лимбической системы, усложняет интерпретацию такой информации, как запах и вкус. Последний уровень, кора головного мозга, добавляет еще более изощренный способ восприятия данных, полученных от органов чувств.
То, как вкус интерпретируется этим многослойным мозгом, прекрасно иллюстрирует, как именно интегрированы все три слоя. Вкус взаимодействует с нашей системой вознаграждения, или системой внутреннего подкрепления, посредством кортико-базальной гангло-таламо-кортикальной замкнутой системы, или петли, как называют ее нейроанатомы. Эта петля представляет собой набор путей в нервных тканях, которые пересекают главные отделы мозга, и работает она по круговой схеме: кора – базальные ядра – таламус. Наиболее значимые системы вознаграждения у позвоночных – это нейроны, проводящие гамма-аминомасляную кислоту (ГАМК) и дофамин. ГАМК и дофамин – две небольшие молекулы, которые проникают в мозг и взаимодействуют со встроенными в мембраны нейронов рецепторами, запуская потенциал действия. Дофаминовые нейроны, в частности, играют огромную роль в эволюции использования животными системы вознаграждения.
Удовольствие играет огромную роль в обучении организмов повторять то, что для них выгодно. Ведь если что-то приносит пользу и доставляет