Стало быть, каждый уровень разрешения имеет свой собственный язык – формулировки, наиболее удобные на этом уровне. Мы называем такие зависящие от разрешения объекты и их свойства «эмерджентными». Процесс, который увязывает теорию на коротких расстояниях с теорией на больших расстояниях, именуется «огрублением» (coarse-graining, рис. 3).
Рис. 3. Иллюстрация огрубления. Объекты при низком разрешении и законы для них (уровень 1) могут быть описаны через объекты и законы при среднем и высоком разрешении (уровни 2 и 3), но не наоборот. Уровни с более низким разрешением возникают из уровней с более высоким разрешением.
Понятие «эмерджентный» противоположно понятию «фундаментальный», означающему, что объект дальше уже нельзя разложить на составные части, а его свойства – вывести из более точной теории. Фундаментальность – вопрос современного уровня знаний. Что фундаментально сегодня, возможно, уже не будет таковым завтра. А вот эмерджентное останется эмерджентным.
Вещество состоит из молекул, которые состоят из атомов, а те, в свою очередь, состоят из частиц Стандартной модели. Частицы Стандартной модели плюс пространство и время, насколько мы сейчас знаем, фундаментальны – не состоят из чего-то еще. В основаниях физики мы пытаемся выяснить, есть ли что-то еще фундаментальнее.
Как физика меня частенько обвиняют в редукционизме, как будто это некая опциональная позиция, которой можно было бы и не придерживаться. Но это не вымышленная концепция, а свойство природы, открывшееся в экспериментах. Мы вытащили эти уровни разрешения и их законы из бесчисленных наблюдений и обнаружили, что они описывают наш мир чрезвычайно хорошо. Эффективная теория поля говорит нам, что мы можем – в принципе – вывести теорию для меньших масштабов из теории для бо́льших, но не в обратную сторону.
Поскольку история науки потихоньку вскрыла эту иерархическую структуру, сегодня многие физики думают, что должна существовать одна фундаментальная теория, из которой выводится все остальное, – «теория всего». Такая надежда закономерна. Если бы вы сосали гигантский леденец сотню лет, разве вы не надеялись бы в итоге добраться до жвачки?
Все течет
Эффективные законы, что зависят от разрешения, предлагают другой способ увидеть, почему естественность привлекательна. Для этого физики присвоили каждой теории положение в абстрактном «пространстве теорий», где удобно изображать между ними связи. Так как теории зависят от разрешения, каждая из них описывает в этом пространстве кривую, когда разрешение меняется (рис. 4). Вместе кривые всех теорий называются «потоком» теорий.
Рис. 4. Каждая точка в пространстве теорий – это отдельная теория. Если мы меняем разрешение, то выписываем кривую. Числа относятся к уровням на рисунке 3.
В этом пространстве естественность означает, что теория для низкого разрешения не должна сильно зависеть от теории для высокого (которая полагается более фундаментальной). Идея в следующем: что бы мы ни выбрали в качестве параметров для более фундаментальной теории при высоком разрешении, при низком физика должна оставаться похожей на ту, что мы наблюдаем. Вот основное свойство естественности – наш выбор не должен иметь значения.
Поток в пространстве теорий позволяет количественно оценить, насколько же теория для низкого разрешения зависит от выбора параметров для высокого; именно так работают вычисления Джудиче[35]. Это проиллюстрировано на рисунке 5. Низкое разрешение – это то, что мы можем исследовать сейчас, где у нас есть Стандартная модель. Кажется странным называть его «низким», учитывая, что это самое высокое разрешение, какого мы когда-либо достигали. Но оно действительно низкое по сравнению с разрешением, которого, как мы думаем, необходимо достичь для того, чтобы пролить свет на теорию всего, – разрешением, значительно превосходящим даже возможности Большого адронного коллайдера.
Стандартная модель (для низкого разрешения) естественна – или не требует тонкой настройки, – если не особенно важно, откуда конкретно в пространстве теорий мы стартуем при высоком разрешении. В этом случае поток всегда вынесет нас куда-то поблизости (в пределах погрешности измерений) от Стандартной модели (рис. 5, слева). Если же мы вынуждены точно подбирать теорию для высокого разрешения, с тем чтобы очутиться рядом со Стандартной моделью, значит, мы тем самым осуществляем тонкую настройку исходной точки. Тогда Стандартная модель неестественна (рис. 5, справа).
Рис. 5. Иллюстрация потока в пространстве теорий в двух случаях: когда теория (а именно – Стандартная модель, обозначенная крестиком) для низкого разрешения естественна / не требует тонкой настройки (слева) и когда она неестественна / требует тонкой настройки (справа).
В случае с тонкой настройкой начальные точки теорий, воспроизводящих Стандартную модель (то есть согласующихся с наблюдениями), должны располагаться близко друг к другу. Это небольшое расстояние соответствует неприглядно маленьким числам, обсуждавшимся нами выше, таким как масса бозона Хиггса.
В следующей подглавке я кратко расскажу о законах пространства, времени и материи, уже нами открытых, и о типе экспериментов, выявивших эти законы. Если вы уже знакомы со Стандартной моделью и согласованной космологической моделью, вы, возможно, предпочтете пропустить этот раздел.
Орудия труда
В 1858 году ирландско-американский писатель Фитц Джеймс О’Брайен придумал идеальный микроскоп. В рассказе «Бриллиантовая линза» безумный микроскопист Линли общается с духом Антони ван Левенгука, который за двести лет до этого открыл бактерии, совершенствуя самые первые микроскопы 52. Всю жизнь Левенгук скрывал свои методы изготовления линз. Но благодаря помощи медиума, мадам Вульпес, Линли узнает от покойного Левенгука, что необходим «бриллиант в сто сорок карат, длительное время подвергавшийся влиянию электромагнитных токов», чтобы сконструировать микроскоп, «увеличительная способность которого будет ограничена только разрешаемостью объекта».
Не имея достаточного финансирования для своих научных исследований, Линли убивает друга и крадет нужный бриллиант. Позже он вглядывается в каплю воды:
Я не могу, не смею пытаться описать чары этого божественного откровения совершеннейшей красоты. Эти глаза таинственного лилового цвета, влажные и ясные, ускользают от моих слов. Ее длинные блестящие волосы, следующие за восхитительной головкой золотой струей, словно дорожка, прочерченная в небесах падающей звездой, будто бы гасят мои самые жгучие строки своим великолепием.
Время покажет, так ли прекрасна природа на самых коротких расстояниях, как изобразил О’Брайен, но мы уже знаем, что его чудесный микроскоп останется художественным вымыслом. Разрешающая сила линз зависит от посредника, на которого они полагаются, – от излучения. Большие длины волн нечувствительны к малым расстояниям, как грубые, тяжелые ботинки нечувствительны к бороздкам на ступенях эскалатора. Разрешающая способность микроскопов ограничена длиной волны используемого излучения, и для того, чтобы исследовать меньшие расстояния, нам нужны более короткие волны.
Видимый свет имеет длины волн примерно от 400 до 700 нанометров[36]. Это приблизительно в 10 000 раз больше размера атома водорода. Поэтому видимый свет прекрасно подходит, если мы хотим изучать клетки, но его недостаточно, если мы намереваемся исследовать атомы. Мы можем достичь большего разрешения, используя излучение с меньшими длинами волн, например рентгеновские лучи, которые улучшают ситуацию по сравнению с видимым светом