2 страница
ухаживали за ранеными, и хоронили своих мертвых, и, возможно, даже играли музыку (есть на то кое-какие археологические данные). Во всем этом они больше напоминают нас, чем любую из современных обезьян. Но если больше, то насколько? Была ли у них речь? Или они представляют тупиковую линию в эволюции людей? А может, какие-то из их генов спрятаны в нас сегодняшних? Все эти вопросы вошли естественной частью в науку палеоантропологию, дисциплину, можно сказать стартовавшую от тех костей из долины Неандерталь, из которых мы теперь, кажется, смогли извлечь ДНК.

Каждый из этих вопросов достоин пристальнейшего внимания, но мне казалось, что с этим фрагментом ДНК нас ждет награда куда более ценная. Ведь неандертальцы – наши ближайшие вымершие родственники. И если бы удалось изучить их ДНК, то непременно бы выяснилось, в какой степени схожи наши гены. Несколько лет назад в нашей лаборатории отсеквенировали большое число фрагментов ДНК шимпанзе. И тогда мы показали, что у человека и шимпанзе различаются чуть больше одного процента нуклеотидов. Ясно, что неандертальцы должны отличаться от нас еще меньше. Но – и самое восхитительное “но” – именно среди этих немногих различий обязаны объявиться те, что отделяют нас от наших ранних предшественников. И не только от неандертальца, но и от мальчика из Туркана, жившего около 1,6 млн лет назад, и от Люси, возрастом около 3,2 млн лет, и от синантропа, которому около полумиллиона лет. Благодаря этим немногим различиям человеческая линия свернула на совершенно новый эволюционный курс: ускоренное технологическое развитие, появление искусства, возможно языка и культуры, как мы их теперь понимаем. Десяток-другой различий в ДНК создали для всего этого необходимую биологическую базу. И если мы сможем изучить неандертальскую ДНК, то все это само придет нам в руки. Убаюканный мечтами (или манией величия), я наконец заснул на рассвете.

Рис. 1.1. Реконструкция скелета неандертальца (слева) и современного человека (справа). С разрешения К. Моубрей, Б. Моли, Я. Татерсол, Г. Соер. Американский музей естественной истории

На следующий день и я, и Матиас опоздали в лабораторию. Мы, естественно, перепроверили вчерашнюю последовательность. Нужно было убедиться, что тут нет ошибок. А потом мы сели и стали думать, как нам дальше поступить. Ведь одно дело – выделить из неандертальских останков один небольшой интересный кусочек мтДНК, но совершенно другое – убедить себя (хотя бы себя, об остальном человечестве речь пока не шла), что эта ДНК принадлежит индивидууму, жившему 40 тысяч лет назад. Предыдущие двенадцать лет работы довольно точно определяли наши дальнейшие действия. Сначала нужно повторить эксперимент. И не просто самый последний его этап, но все с самого начала, с высверливания кусочка кости. Ведь есть вероятность, что мы обманулись случайно попорченной и видоизмененной человеческой мтДНК из этой кости. Затем нужно удлинить этот фрагмент последовательности мтДНК с помощью других фрагментов, которые с ним перекрываются. За счет этого у нас появится возможность реконструировать относительно длинные участки последовательности. И уже с них начнется выяснение, насколько неандертальская мтДНК отличается от сегодняшней человеческой. И только потом приступить к третьему, важнейшему этапу. Я сам часто говорил, что результаты, из ряда вон выходящие, требуют столь же тщательных, из ряда вон выходящих проверок – а именно повторения их в других независимых лабораториях. Что совершенно нетипично для нашего насквозь конкурентного научного мира. А заявление насчет прочтения неандертальской ДНК будет, безусловно, сочтено как раз таким, из ряда вон выходящим. Так что если мы хотим исключить возможные лабораторные ошибки, то придется отдать кусочек драгоценной неандертальской кости в какую-то независимую лабораторию и молиться, чтобы там получили те же результаты. Мы сидели и говорили обо всем этом с Матиасом и Ральфом. Прикинув план работ, мы поклялись держать все в строжайшей тайне. Не стоит привлекать к себе внимание, пока не уверимся, что все в точности так, как мы думаем.

Матиас сразу же ударился в работу. Промаявшись почти три года в тщетных попытках извлечь ДНК из египетских мумий, он воодушевился перспективой успеха. Ральф должен был вернуться в Бонн и ужасно из-за этого переживал; там он ничего не мог делать, только сидеть сложа руки и с горячим нетерпением ждать от нас весточки. Я пытался сосредоточиться на своих собственных проектах, но мне с огромным трудом удавалось отвлечься от Матиасовых занятий.

А Матиасу приходилось нелегко. Ведь мы работали не с теми чистенькими образцовыми препаратами, какие получаются из образцов крови или тканей живых индивидов. Из учебников мы привыкли к виду аккуратной двойной спирали ДНК, в которой чередой идут друг за дружкой нуклеотиды АТГЦ, соединенные попарно – аденин с тимином и гуанин с цитозином – и пристегнутые к остову из сахара и фосфата. Но на самом деле в клеточном ядре или в митохондриях ДНК все время в движении, ее химическая структура не статична. Напротив, ее упорядоченная организация то и дело нарушается, повреждения хитрыми способами отслеживаются и исправляются. Вдобавок молекула ДНК ужасно длинная. Каждая хромосома представляет собой одну громадную молекулу. В комплекте из 23 хромосом человека собраны в сумме около 3,2 миллиарда нуклеотидов. Так как в ядре у нас два таких комплекта – один от отца, другой от матери, и в каждом по 23 хромосомы, – то всего получается 6,4 миллиарда нуклеотидов (или лучше пар нуклеотидов, так как спираль двойная). По сравнению с ядерной митохондриальная ДНК ничтожна, всего 16 500 пар нуклеотидов. Но и это число велико. Кроме того, не будем забывать, что ДНК нам попалась древняя, а не современная, и как с ней работать, неизвестно.

Самый распространенный тип повреждений ДНК как ядерной, так и митохондриальной – это потеря одной из химических составляющих у цитозина. Цитозин, избавившись от аминогруппы, превращается в урацил (У), другой нуклеотид, который никогда не встречается в природных ДНК. В клетках имеются особые ферментные системы, убирающие урацил и возвращающие цитозин на место. Вырезанные урацилы отправляются на клеточную свалку. Между прочим, по числу дефектных нуклеотидов в анализах мочи подсчитано, что в каждой клетке ежедневно примерно 10 тысяч цитозинов превращаются в урацилы и затем возвращаются в исходную форму. И это лишь одна из десятка обычных химических опасностей, которые подстерегают наш геном. Например, нуклеотид может выпасть, получается пустое место, по которому происходит разрыв нитей двойной молекулы ДНК. С этой напастью сражаются специальные ферменты, которые вставляют нуклеотиды на место; им нужно успеть до того, как нити разойдутся. А если все же это произошло, то в бой вступают другие ферменты – их задача вновь соединить разошедшиеся нити. В действительности хватит и часа, чтобы клеточный геном изменился, не будь эти ремонтные бригады постоянно на