Не путайте биты с байтами! Бит состоит из одной двоичной цифры, и разных битов всего два: и 1. Байт содержит ровно восемь цифр, не больше и не меньше. А сколько всего имеется разных байтов? Это легко выяснить из предыдущей таблицы: 256.
Получили второе мистическое компьютерное число – 256. Компьютер все время работает с байтами, обычно ими легче оперировать. Но по мере развития прогресса компьютеры становились все мощнее и мощнее, все мозговитее и мозговитее. Байтов в них становилось все больше и больше. Сейчас их уже так много, что разработана целая система так называемых производных единиц от байта.
Короче, сначала придумали третье компьютерное число, равное 2 = 1024. Почему такое? Очень просто. Во-первых, круглая степень – 10. Во-вторых, 1024 почему-то почти равно 1000. А 1000 – это основание для обычных производных единиц: 1 километр равен 1000 метров, 1 килограмм равен 1000 граммов. Дело даже дошло до того, что один немецкий компьютерный журнал поместил изображение 1 киломарки, равной 1024 маркам…
Затем постановили, что 1024 байта равны 1 – правильно! – килобайту.А 1024 килобайта равны 1 мегабайту,и так далее. Все имеющиеся производные единицы байта находятся в следующей таблице.
Только будьте внимательны при использовании производных единиц! Полностью их имена пишутся с маленькой буквы, а сокращенно – с большой (но байт сокращается до маленькой буквы).
■ 1 килобайт = 1 кб = 1 К = 210 б;
■ 1 мегабайт = 1 Мб = 1 М = 210 К = 220 б;
■ 1 гигабайт = 1 Гб = 1 Г = 210 М = 220 К = 230 б.
Как же перевести число из привычной нам десятичной системы в двоичную?
Проще всего – с помощью инженерного калькулятора. Если же такового под рукой не окажется, можно произвести это преобразование с помощью обычной бумаги и карандаша. Наиболее известный и простой способ перевода из десятичной системы в двоичную производится в десятичной системе путем деления на 2 – на основание двоичной системы. Приведем алгоритм перевода чисел из десятичной системы в двоичную, состоящий из двух шагов.
Число в десятичной системе делится на 2. Получаем частное и остаток. Частное снова делится на 2. Снова получаем частное и остаток. Опять делим новое частное на 2 и так далее. Остатки от деления – цифры и 1 – являются цифрами соответствующего двоичного числа, записанными справа налево.
Процесс деления прекращается, когда частное становится равным нулю. В первом случае (а) у нас 2010 = 101002. Во втором случае (б) получается 3010 = 111102.
А наоборот?
Наиболее прост такой способ превращения двоичного числа в десятичное. Подпишем под последней цифрой двоичного числа десятичное число 2° = 1, под второй цифрой справа – число 21 = 2, следующей цифрой – число 22 = 4, под четвертой – число 23 = 8 и так далее. Затем просто сложим те десятичные числа – степени двойки – над которыми стоят двоичные цифры 1.
Например:
101010002 = 12810 + 3210 + 810 = 16810.
010101012 = 6410 + 1610 + 410 + 110= 8510.
Шестнадцатеричная система
Кроме двоичной системы счисления, в компьютерной практике также используется шестнадцатеричная система. На практике она используется даже чаще, чем двоичная: при задании цветов страницы сайта, при доступе к символам современных двухбайтовых шрифтов, при программировании, особенно на ассемблере… Дело в том, что байт кодируется в точности двузначным шестнадцатеричным числом, что гораздо более просто и читабельно, чем в двоичной системе. Но об этом ниже.
В некотором смысле шестнадцатеричная система еще хуже, чем двоичная. Судите сами. Сколько цифр в шестнадцатеричной системе? Ровно 16. И какими же цифрами их обозначать? А вот какими:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F.
Здесь ровно 16 цифр. Последние шесть цифр взяты из латинского алфавита и читаются так:
■ А – цифра «а». Это цифра «десять»;
■ В – цифра «бэ» – цифра «одиннадцать»;
■ С – цифра «цэ» – «двенадцать»;
■ D – цифра «дэ» – «тринадцать»;
■ Е – цифра «е» – «четырнадцать»;
■ F – цифра «эф» – «пятнадцать».
Как видите, проблемы с русским языком стали еще серьезней. Первые шестнадцатеричные числа мы выписывать не будем, а укажем только ключевые моменты получения следующего шестнадцатеричного числа, которых, в отличие от двоичной системы, не один, а уже четыре.
Лучше понять шестнадцатеричную систему можно, изучая ее таблицу сложения:
Из шестнадцатеричной системы в десятичную числа переводятся так же, как и из двоичной, только, конечно, нужно делить не на 2, а на 16, а остатки, значения которых будут от О до 15, переводить в шестнадцатеричные цифры. Обратный перевод осуществляется так же, как было представлено десятичное число в начале главы, только в степень возводится число 16. Например:
Гораздо интереснее переводить двоичные числа в шестнадцатеричные и обратно.
Алгоритм перевода из шестнадцатеричной системы в двоичную такой:
■ каждая цифра шестнадцатеричной записи числа записывается четырехзначным двоичным числом;
■ нули, стоящие слева, можно отбросить.
Запись шестнадцатеричных цифр двоичными числами берут из следующей таблицы, в которой везде, где это не может привести к недоразумению, у чисел опущены индексы с основанием системы счисления.
Примеры.
Алгоритм перевода из двоичной системы в шестнадцатеричную.
■Каждые четыре двоичные цифры, считая справа налево, записываются одной шестнадцатеричной цифрой, которые выписываются также справа налево.
■ Если для последней четверки не хватает цифр, слева от двоичного числа дописываются нули.
Примеры.
ЛОГИЧЕСКАЯ СТРУКТУРА ЖЕСТКОГО ДИСКА
Для того чтобы наконец начать свою работу в качестве информационного амбара, жесткий диск должен пройти как минимум два испытания: создание на вашем винчестере разделов и логических дисков и форматирование.
Разделы и диски
Начнем с первого – разбивки единого пространства жесткого диска на более мелкие кусочки. Это только для нас, пользователей, жесткий диск выглядит существом монолитным, единым и неделимым. Хотя даже с физической точки зрения это не так: информационное пространство нашего винчестера размещено на нескольких физических пластинах? Теперь оказывается, что и на логическом уровне дисков на одном винчестере может быть несколько!
Прежде всего, диск можно разбить на несколько разделов. Например, на два – основной и дополнительный. Главная программа, необходимая для работы компьютера (операционная система) должна обязательно проживать в основном разделе (на практике на компьютер можно установить НЕСКОЛЬКО операционных систем).
Но самое интересное начинается дальше: в каждом разделе мы можем создать еще несколько «логических дисков»! При этом для нас, пользователей, да и для компьютера они будут выглядеть как отдельные устройства, каждое из которых будет носить собственное имя. Бывает и наоборот – благодаря технологии RAID вы можете объединить в один логический диск несколько физических «винчестеров». Дома этот способ используется редко, а вот на мощных серверах, занятых, к примеру,