В идеале – если мы хотим беспристрастной подачи информации – нужно давать как положительные, так и отрицательные значения, хотя даже порядок столбцов в таблице может влиять на интерпретацию. Необходимо тщательно продумывать и порядок строк. Например, в табл. 1.1 больницы распределены в порядке увеличения количества проведенных операций, но если их упорядочить, например, в порядке убывания смертности (с наибольшим значением в верхней части таблицы), то это может создать впечатление, что перед нами правильный и важный способ сравнения больниц. Такие рейтинговые таблицы любят средства массовой информации и некоторые политики, однако они могут вводить в заблуждение, причем не только потому, что различия бывают вызваны случайными отклонениями, но и потому, что больницы принимают пациентов с заболеваниями разной степени тяжести. Например, по данным табл. 1.1 можно заподозрить, что больница в Бирмингеме – одна из крупнейших и наиболее известных детских больниц – берет наиболее тяжелые случаи. Поэтому было бы несправедливо говорить, что у нее не самые впечатляющие показатели выживаемости[27].
Показатели выживаемости можно представить и в виде горизонтальной столбчатой диаграммы, как на рис. 1.1. Главное – решить, где начинать горизонтальную ось: если с 0 %, то полосы займут практически всю ширину диаграммы, что покажет необычайно высокий уровень выживаемости во всех больницах, но полосы между собой будет трудно различить. Гораздо хуже старый трюк, использующийся для обмана, – начать, например, с 95 %. Тогда все больницы будут резко отличаться, даже если на самом деле разница в показателях объясняется чистой случайностью.
Рис. 1.1
Горизонтальная гистограмма уровня выживаемости за 30 дней в тринадцати больницах. Выбор начала горизонтальной оси (в данном случае 86 %) может существенно сказаться на впечатлении, вызываемом графиком. Если ось начинается с 0 %, все больницы выглядят неразличимыми; если же начать с 95 %, разница будет обманчиво драматичной
Следовательно, выбор начала оси представляет собой дилемму. Альберто Каиро, автор авторитетных книг по визуализации данных[28], предлагает всегда начинать с «логической и взвешенной точки отсчета», которую в нашем случае трудно определить. Мой собственный произвольный выбор – 86 %, что примерно отражает недопустимо низкий уровень выживаемости в Бристольской больнице двадцатью годами ранее.
Я начал книгу цитатой Нейта Сильвера, основателя цифровой платформы FiveThirtyEight и автора точного прогноза президентских выборов 2008 года в США. Он красноречиво высказал идею, что цифры не говорят сами за себя – это мы наполняем их смыслом. А значит, коммуникации – ключевая часть цикла решения проблем, и в этом разделе я показал, как способ представления данных может влиять на наше восприятие.
Теперь нам нужно ввести важное и удобное понятие, которое поможет выйти за рамки простых вопросов типа «да/нет».
Качественные переменные
Переменной называется любая величина, которая может принимать различные значения в разных обстоятельствах; это очень полезный сокращенный термин для всех видов наблюдений, содержащих данные. Бинарные переменные могут принимать только два значения (да/нет) – например, жив человек или мертв, женщина он или мужчина. Значения могут отличаться у разных людей и даже у одного человека в разные моменты жизни. Качественная (или категорийная) переменная – это переменная, которая может принимать одно, два или более значений, попадающих в ту или иную категорию. При этом категории могут быть:
• неупорядоченными: страна рождения человека, цвет автомобиля или больница, где делали операцию;
• упорядоченными: воинские звания;
• сгруппированными числами: степени ожирения, которые часто определяются в терминах пороговых значений по индексу массы тела (ИМТ)[29].
Для отображения качественных данных часто используются круговые диаграммы, что позволяет составить представление о размере каждой категории по занимаемой ею части круга. Однако здесь вероятны проблемы с наглядностью, например при попытке изобразить на одной диаграмме слишком много категорий или использовать трехмерное представление, искажающее площади. Рис. 1.2 показывает весьма уродливый пример, смоделированный с помощью Microsoft Excel, где представлены данные из табл. 1.1 о результатах операций на сердце для 12 933 детей.
Рис. 1.2
Процентные доли операций на сердце у детей в каждой больнице, отображенные на круговой 3D-диаграмме из Excel. Это крайне неудачное представление данных зрительно увеличивает категории на переднем плане, делая невозможным визуальное сравнение между больницами
Использование сразу нескольких круговых диаграмм, как правило, не очень хорошая идея, поскольку это затрудняет сравнение относительных размеров областей разной формы. Сравнения лучше проводить с помощью гистограмм (столбчатых диаграмм) – при этом хорошо видна разница в высоте или длине. Рис. 1.3 – более простой и понятный пример горизонтальной гистограммы, где длина горизонтальной полосы отражает долю операций каждой больницы.
Рис. 1.3
Процентные доли всех операций на сердце у детей, проведенных в каждой больнице: более четкое представление с помощью горизонтальной гистограммы
Сравнение двух долей
Итак, увидев, как с помощью гистограммы можно элегантно сравнить несколько пропорциональных долей, было бы логично полагать, что сравнение двух долей вообще тривиальное дело. Однако когда эти доли представляют собой оценку рисков причинения какого-либо вреда, метод их сравнения становится серьезным, дискуссионным вопросом. Типичный пример:
Каков риск развития рака от употребления сэндвичей с беконом?
Каждому из нас знакомы громкие заголовки в СМИ, предупреждающие о том, что какая-то вполне обыденная вещь увеличивает риск возникновения чего-нибудь плохого. Я обычно называю такие истории «кошки вызывают рак». Например, в ноябре 2015 года Международное агентство по изучению рака (МАИР) Всемирной организации здравоохранения объявило обработанное мясо «канцерогеном группы I», то есть отнесло его к той же категории, что сигареты и асбест. Естественно, это привело к появлению устрашающих заголовков. Так, Daily Record написала, что «по мнению экспертов, бекон, ветчина и сосиски подвергают такому же риску развития рака, как и сигареты»[30].
МАИР попыталось подавить панику, подчеркнув, что попадание в группу I всего лишь говорит о существовании повышенного риска рака, а не о реальной величине самого риска. В пресс-релизе МАИР сообщалось, что ежедневное употребление 50 граммов обработанного мяса связано с повышением риска развития рака кишечника на 18 %. Звучит тревожно, но так ли это на самом деле?
Величина 18 % известна как относительный риск, который отражает разницу в опасности развития рака кишечника (колоректального рака) у двух групп людей: ежедневно употребляющих 50 граммов обработанного мяса (например, сэндвич с двумя ломтиками бекона) и тех, кто его не ест. Статистики наложили этот относительный показатель на каждую отдельную группу риска и посмотрели, какие абсолютные значения он принимает в каждом случае, что позволило выявить абсолютный риск этого исхода для каждой группы. Они пришли к выводу, что при нормальном ходе вещей примерно 6 из каждых 100 человек, которые не едят бекон ежедневно, заболеют раком кишечника. Если же 100 таких человек ели бы бекон ежедневно всю жизнь, то, согласно отчету МАИР,