Времена изменились, и с начала третьего тысячелетия до н. э. наступил новый исторический этап: числа стали существовать автономно от описываемого ими объекта. Раньше, когда использовались запечатанные сосуды и первые таблички, символы относились к конкретным описываемым предметам. Так, овца и свинья, являясь разными животными, имели различные символы для своего обозначения. И каждый объект аналогично этому имел собственный символ для описания, как если бы для него был свой специальный жетон.
Но в один прекрасный момент все изменилось. У чисел появились обозначения. Иными словами, чтобы описать восемь овец, теперь можно было не использовать восемь символов, обозначающих овцу, а вместо этого изобразить символ для обозначения числа восемь и рядом с ним символ овцы. И если требовалось описать восемь свиней, достаточно было заменить символ овцы на символ свиньи. Число восемь отныне приобрело собственное значение.
Это один из наиболее важных и невероятных этапов истории. Если бы меня попросили назвать дату появления математики, то я без колебаний назвал бы именно эту. Вот тот самый момент, когда числа начинают существовать самостоятельно от исчисляемых ими предметов, отрываясь тем самым от реальных объектов и переходя в разряд умозрительного. Все, что было раньше – рубила, узоры, жетоны, – это только предпосылки, предшествовавшие неизбежному зарождению чисел.
С этих пор числа перешли в разряд абстракции, и со временем сформировалось единообразие в математике, науке, в наивысшей степени абстрактной. Математики не изучают физические объекты, состоящие из соответствующих веществ и атомов. Они рассматривают только идеи. Тем не менее эти идеи имеют огромное значение для лучшего понимания мира!
Закономерно, что появление чисел также способствовало зарождению письменности в целом. Потому что, если основная часть идей могла передаваться устно, для описания числовых характеристик требовалось вносить определенные записи.
Разъединены ли сегодня понятия содержания чисел и их графического выражения? Если я попрошу вас подумать об овце, как вы ее себе представите? Вы, без сомнения, представите блеющее животное на четырех лапах с шерстью на спине. Вам не придет в голову представить четыре буквы, из которых состоит слово «овца». Однако если я попрошу вас представить себе число сто двадцать восемь, что вы представите? Вероятно, в вашем воображении появятся цифры 1, 2 и 8? Мысленное представление больших цифр, кажется, неразрывно связано с их написанием.
Это совершенно беспрецедентный случай. В отличие от всех остальных вещей, для которых письменное обозначение вторично, а первичны устные названия, для чисел написание было первичным, а устные эквиваленты появились уже позднее. Только задумайтесь, как вы произносите «сто двадцать восемь»? Вы скажете: «128: 100 + 20 + 8». После определенного значения невозможно говорить о числах, не задумываясь об их написании.
В наше время встречаются коренные племена, в которых используется очень ограниченное количество слов для числовых обозначений. Так, жители племени пирахан (Pirahã), охотники-собиратели, живущие на берегах Рио-Мэси (rio Maici) в Амазонии, умеют считать только до двух. Для всего, что больше двух, они используют слово, означающее «несколько» или «много». Также в Амазонии живет племя мандуруку (Munduruku), в котором используется пять слов, обозначающих числа, что соответствует количеству пальцев на одной руке.
В современном обществе числа заполонили повседневную жизнь. Они стали настолько распространены, что мы часто забываем, до какой степени сама идея их создания гениальна и что нашим предкам потребовались века, чтобы достичь этого уровня.
На протяжении веков изобретено множество способов написания чисел. Самый простой – это обозначать число количеством символов, равным этому числу. Например, параллельными черточками. Этот метод мы до сих пор часто используем, в частности, чтобы вести счет в игре.
Наиболее ранний пример такого метода исчисления, возникшего еще до появления письменности, кости Ишанго, найден в 1950-е гг. в месте проживания шумеров, на берегу озера Эдуард на территории современной Республики Конго. Данные предметы изготовлены приблизительно двадцать тысяч лет назад! Эти экспонаты длиной в 10 и 14 сантиметров покрыты более или менее равноудаленными насечками. С какой целью они сделаны? Возможно, это была первая система исчисления. Некоторые считают, что это календарь, в то время как другие усматривают более развитые математические формы. Сейчас уже сложно сказать точно. Обе кости в настоящее время экспонированы в Музее естественных наук в г. Брюсселе (Бельгия).
В таком методе подсчета одна черта обозначает одну единицу, что вызывает сложности при описании крупных чисел. Чтобы решить эту проблему, необходимо было ввести обозначения для нескольких элементов.
Они появились уже в Месопотамии. Например, специальный жетон использовался для обозначения десяти овец. Когда произошел переход к письменности, данный принцип сохранился. Так, встречаются символы, обозначающие числа 10, 60, 600, 3600 и 36 000.
В обозначении символов уже в этот период отмечается определенная логика. Так, символы для 60 и 3600 с окружностями внутри обозначают числа в 10 раз больше.
С появлением клинописи символы начинают постепенно видоизменяться.
В расположенном неподалеку Египте с третьего тысячелетия до н. э. также начали развиваться собственные численные обозначения.
С этих пор повсеместно была принята десятичная система исчисления: свой собственный символ использовался для обозначения каждого числа, в 10 раз большего предыдущего символа.
Начала формироваться новая система исчисления посредством прибавления. В данной системе порядок символов влияет на их значение. И в этом первыми тоже были жители Месопотамии.
Начиная со второго тысячелетия до н. э. Вавилон занимал центральное положение на Ближнем Востоке. Клинопись по-прежнему оставалась популярной, но с этих пор начали использовать только два символа: чем-то похожий на гвоздь для обозначения 1 и наклоненный уголок – для обозначения 10.
Используя эти два символа, можно было написать любое число до 59. Так, для обозначения 32 необходимо было написать три уголка и два гвоздика.
А затем, начиная с 60, использовали символы для обозначения чисел, кратных 60. По аналогии с тем, как в современной системе исчисления числа записываются справа налево: сначала единицы, затем десятки, сотни и т. д., в вавилонской системе исчисления записывались сначала единицы, затем 60, 3600 (т. е. 60, умноженное на 60) и так каждый следующий порядок в 60 раз больше предыдущего.
Например, число 145 обозначалось как два числа 60, дающие в сумме 120, а также 25 единиц. Вавилоняне записывали это число так:
Благодаря этой системе ученые Вавилона достигли необычайных успехов в математике, научились не