Принцип бесконечности организует рассказ об анализе вокруг какой-то методологической темы. Но анализ – это не только методология, но и загадки. Его развитию особенно способствовали три: загадка кривых, загадка движения и загадка изменения. Плодотворность их изучения доказала ценность чистого любопытства.
Задачи о кривых, движении и изменении на первый взгляд могут показаться неважными, а может, даже безнадежно заумными. Но они затрагивают настолько глубокие концептуальные вопросы, а математика так глубоко вплетена в ткань Вселенной, что их решение имело далеко идущие последствия для хода цивилизации и нашей повседневной жизни. Как мы увидим в следующих главах, мы пожинаем плоды этих исследований всякий раз, когда слушаем музыку в своих телефонах, делаем покупки в магазинах с помощью лазерных сканеров или находим дорогу домой благодаря GPS-навигатору.
Все началось с загадки кривых. Здесь я использую слово «кривые» в самом широком смысле – для обозначения любой изогнутой линии, изогнутой поверхности или изогнутого твердого тела – представьте себе резиновую ленту, обручальное кольцо, плавающий пузырь, контуры вазы или палку салями. Чтобы упростить вещи, ранние геометры, как правило, сосредоточивались на абстрактных, идеализированных версиях кривых форм и игнорировали толщину, шероховатости и текстуру. Например, математическая сфера представлялась бесконечно тонкой, гладкой, идеально круглой мембраной без толщины, неровностей или волосатости, как у кокосового ореха. Но даже при таких идеализированных представлениях изогнутые формы вызывали принципиальные трудности, поскольку там не было прямых. С треугольниками и квадратами проблем не возникало. С кубами тоже. Они состоят из прямых линий и плоскостей, соединенных между собой в углах. Нетрудно вычислить их периметр, площадь или объем. Такие задачи умели решать геометры всего мира – в Древнем Вавилоне и Египте, Китае и Индии, Греции и Японии. Но с округлыми формами дело обстояло гораздо хуже. Никто не знал, какова поверхность сферы или какой у нее объем. В древности даже вычисление длины окружности или площади круга представлялось невыполнимой задачей. Не было стартовой точки и прямых линий, от которых можно оттолкнуться. Все изогнутое казалось непостижимым.
Так начинался анализ. Он рос из любопытства геометров и разочарования в округлости. Круги, сферы и прочие изогнутые формы были Гималаями той эпохи. И не потому, что они ставили важные практические задачи, по крайней мере поначалу. Дело было в жажде приключений, характерной для человеческого духа. Подобно покорителям Эвереста, геометры хотели разобраться с кривыми просто потому, потому что они есть[23].
Прорыв произошел благодаря идее, что кривые на самом деле состоят из прямых частей. Хотя это неправда, но можно сделать вид, что это так. Загвоздка была в том, что тогда эти части должны быть бесконечно малы и бесконечно многочисленны. Благодаря такой фантастической концепции родилось интегральное исчисление. Это самое раннее применение «принципа бесконечности». История его развития растянется у нас на несколько глав, но его суть в зародышевой форме мы можем изложить уже сейчас: если очень сильно увеличить окружность (или другую гладкую кривую), то часть, которую мы увидим под микроскопом, будет выглядеть как прямая линия. Так что в принципе можно вычислить длину кривой, сложив длины всех маленьких прямых кусочков. Чтобы выяснить, как именно это делать – нелегкая задача, – понадобились многовековые усилия величайших математиков человечества. В итоге коллективно (а иногда и в результате ожесточенного соперничества) они продвинулись по пути к решению загадки кривых. Побочными результатами, как мы увидим в главе 2, стала математика, используемая для рисования реалистично выглядящих волос, одежды и лиц персонажей в компьютерной анимации и вычисления, необходимые пластическим хирургам для выполнения операций на лице виртуальных пациентов, прежде чем оперировать реальных.
Поиски решения загадки кривых достигли апогея, когда стало ясно, что кривые – это нечто большее, чем просто геометрические отклонения. Они были ключом к разгадке тайн природы. Они естественным образом возникали в параболической дуге летящего мяча, в эллиптической орбите Марса, движущегося вокруг Солнца, и в выпуклой форме линзы, которая могла преломлять и фокусировать свет в нужном месте, без чего было бы невозможно бурное развитие микроскопов и телескопов в Европе позднего Возрождения.
Так началась вторая великая одержимость: увлечение тайнами движения на Земле и в Солнечной системе. С помощью наблюдений и замысловатых экспериментов ученые обнаружили интересные численные закономерности для простейших двигающихся объектов. Они измеряли колебания маятника, определяли ускорение шара, катящегося по наклонной плоскости, и наносили на карту движение небесных тел. Обнаруженные закономерности восхищали их: действительно, Иоганн Кеплер впал в состояние описанного им «священного помешательства», обнаружив законы движения планет, поскольку эти закономерности показались ему признаком работы Бога. С более светской точки зрения такие законы подкрепляли утверждение, что природа глубоко «математична», как и говорили пифагорейцы. Единственная загвоздка – никто не мог объяснить эти новые чудесные закономерности, по крайней мере с помощью существовавших в то время форм математики. Арифметика и геометрия не справлялись с этой задачей даже в руках великих математиков.
Проблема заключалась в том, что движение не было равномерным. Шар, катившийся по наклонной плоскости, непрерывно менял скорость, а планета, вращающаяся вокруг Солнца, все время меняла направление движения. Что еще хуже, планеты двигались быстрее, когда находились ближе к Солнцу, и медленнее, когда находились от него вдалеке. Не было никакого известного способа разобраться с непрерывно изменяющимся движением. У математиков имелась теория для самого тривиального вида движения – перемещения с постоянной скоростью, когда расстояние вычисляется путем произведения скорости на время. Но когда скорость меняется, причем непрерывно, дела обстоят совершенно иначе. Движение оказалось таким же Эверестом, как и кривые.
Как мы увидим в середине книги, очередные крупные достижения анализа выросли из стремления разгадать тайну движения. Как и в случае кривых, на помощь пришел принцип бесконечности. На этот раз пришлось притвориться, что движение с переменной скоростью состоит из бесконечно большого числа бесконечно коротких движений с постоянной скоростью. Чтобы представить, что это значит, вообразите, что вы едете в машине с нервным водителем, заставляющим автомобиль двигаться рывками. Вы с беспокойством смотрите на спидометр, стрелка которого дергается вверх и вниз при каждом рывке машины. Но даже самый резкий водитель не сможет сильно сдвинуть стрелку за миллисекунду, а уж за более короткий, то есть бесконечно малый интервал, – и подавно. Стрелка просто замрет на месте. Никто не способен так быстро нажать на педаль газа.
Эти идеи объединились в более молодой части анализа – дифференциальном исчислении. Это было именно то, что